PhD Complex Analysis Exam, January 3, 2014.
Do any 9 problems.
The notation $f \in H(\Omega)$ means f is holomorphic in the domain Ω.

1. Prove the fundamental theorem of algebra.
2. Let Ω be a domain on the complex plane and M be a finite positive constant. Suppose F is a family of holomorphic functions on Ω. If $|f(z)| \leq M$ for all $z \in \Omega$ and all $f \in F$, prove that F is equi-continuous on Ω.
3. Let $f_{n} \in H(\Omega), n=1,2,3, \ldots$ be one to one in Ω. If $f_{n} \rightarrow f$ uniformly on compact subsets in Ω, prove that f is either one to one or constant. Show with examples that both conclusions can occur.
4. Let $f \in H(\Omega)$. If f has no zeros in Ω, prove that $\ln |f|$ is harmonic in Ω.
5. Evaluate the integral

$$
\int_{0}^{\infty} \frac{\ln x}{\left(x^{2}+b^{2}\right)^{2}}, b>0
$$

6. Let \mathbb{C} be the complex plane. Suppose $f: \mathbb{C} \rightarrow \mathbb{C}$ is continuous and f is holomorphic except in $[-1,1]$. Prove that f is entire.
7. Prove that a doubly periodic entire function is constant.
8. Let P be a polynomial and C the circle $|z-a|=R$, Evaluate the integral $\int_{C} P(z) d \bar{z}$.
9. Let $f, F \in H(U)$, where $U=\{z:|z|<1\}$ and let $R_{f}=\{f(z): z \in U\}$ and $R_{F}=\{F(z)$: $z \in U\}$. Suppose F is one to one in $U, f(0)=F(0)$ and D_{f} is contained in D_{F}. Prove that there exists an $\omega \in H(U)$ such that $f(z)=F(\omega(z))$ and $|\omega(z)| \leq|z|$. Also show that the equality holds if and only if $D_{f}=D_{F}$.
10. Suppose $f \in H\left(\Pi^{+}\right)$, where Π^{+}is the upper half plane and $|f| \leq 1$. How large can $\left|f^{\prime}(i)\right|$ be? Find the extremal functions.
11. Find all entire functions f such that $|f(z)|=1$ whenever $|z|=1$.
