PhD Complex Analysis Examination. September 2011. Do all 9 problems.
The symbol U always denotes the unit disc: $|z|<1 ; \mathbb{C}$, the complex plane; Ω, an open region in \mathbb{C}; and $\Re z$, the real part of z.

1. Evaluate the integral $\int_{0}^{\infty} \frac{(\log x)^{3}}{1+x^{2}} d x$.
2. Let $f_{n}, n=1,2,3, \ldots$, be a sequence of one-to-one analytic functions on Ω. If f_{n} converges uniformly to f on any compact subset of Ω, prove that f is either constant or one-to-one. Show by examples that both conclusions can occur.
3. Let F be a family of analytic functions f on U such that $\Re f>0$ and $f(0)=1$. Prove that F is a normal family. Can the condition $f(0)=1$ be omitted? Justify your answer.
4. Suppose f is a conformal mapping of U onto a square with center at 0 and $f(0)=0$. Prove that $f(i z)=i f(z)$. If $f(z)=\sum_{0}^{\infty} c_{n} z^{n}$, prove that $c_{n}=0$ unless $n-1$ is a multiple of 4 .
5. Let R be a rational function such that $|R(z)|=1$ if $|z|=1$. Prove that R is of the form $R(z)=c z^{m} \prod_{n=1}^{k} \frac{z-a_{n}}{1-z \overline{a_{n}}}$, where c is a constant with $|c|=1, m$ is an integer and $a_{1}, a_{2}, \ldots, a_{k}$ are complex numbers such that $a_{n} \neq 0$ and $\left|a_{n}\right| \neq 1$.
6. Let f be analytic in Ω. If f has no zeros in Ω, prove that $\log |f|$ is harmonic in Ω.
7. Suppose that $f: \mathbb{C} \rightarrow \mathbb{C}$ is a continuous function and f is analytic everywhere except possibly on $[-1,1]$. Prove that f is an entire function.
8. Suppose f and g are both analytic in U, and neither of them has a zero in U. If $\frac{f^{\prime}}{f}(1 / n)=\frac{g^{\prime}}{g}(1 / n)$ for $n=2,3,4, \ldots$, find a simple relation between f and g.
9. Construct a conformal map $w=f(z)$ which maps U onto the angular region A : $|\arg (w)|<\alpha$ and $f(0)=1$, where $0<\alpha<\pi$.
