PhD Complex Analysis Examination. September 2011. Do all 9 problems.

The symbol U always denotes the unit disc: |z| < 1; C, the complex plane; Ω , an open region in C; and $\Re z$, the real part of z.

1. Evaluate the integral $\int_0^\infty \frac{(\log x)^3}{1+x^2} dx$.

2. Let f_n , n = 1, 2, 3, ..., be a sequence of one-to-one analytic functions on Ω . If f_n converges uniformly to f on any compact subset of Ω , prove that f is either constant or one-to-one. Show by examples that both conclusions can occur.

3. Let F be a family of analytic functions f on U such that $\Re f > 0$ and f(0) = 1. Prove that F is a normal family. Can the condition f(0) = 1 be omitted? Justify your answer.

4. Suppose f is a conformal mapping of U onto a square with center at 0 and f(0) = 0. Prove that f(iz) = if(z). If $f(z) = \sum_{0}^{\infty} c_n z^n$, prove that $c_n = 0$ unless n - 1 is a multiple of 4.

5. Let R be a rational function such that |R(z)| = 1 if |z| = 1. Prove that R is of the form $R(z) = cz^m \prod_{n=1}^k \frac{z-a_n}{1-z\overline{a_n}}$, where c is a constant with |c| = 1, m is an integer and $a_1, a_2, ..., a_k$ are complex numbers such that $a_n \neq 0$ and $|a_n| \neq 1$.

6. Let f be analytic in Ω . If f has no zeros in Ω , prove that $\log |f|$ is harmonic in Ω .

7. Suppose that $f : \mathbb{C} \to \mathbb{C}$ is a continuous function and f is analytic everywhere except possibly on [-1, 1]. Prove that f is an entire function.

8. Suppose f and g are both analytic in U, and neither of them has a zero in U. If $\frac{f'}{f}(1/n) = \frac{g'}{g}(1/n)$ for n = 2, 3, 4, ..., find a simple relation between f and g.

9. Construct a conformal map w = f(z) which maps U onto the angular region A : $|\arg(w)| < \alpha$ and f(0) = 1, where $0 < \alpha < \pi$.