1. A fixed point of a function f is a point x with f(x) = x. Let G be an open, simply connected subset of \mathbb{C} . If f is analytic on G, $f(G) \subset G$, and f has two fixed points, show that f is the identity map.

2. Let G be an open, connected subset of \mathbb{C} and f be analytic on G. Note that we are not assuming that G is simply connected.

(a) Assume now that for another open, connected set H, $f(G) \subset H$ and $h: H \to \mathbb{R}$ is harmonic. Show that $h \circ f$ is harmonic.

(b) Prove or disprove: Both the real and imaginary parts of f are harmonic functions.

(c) Prove or disprove, if $u : G \to \mathbb{R}$ is harmonic, then there is a harmonic function $v : G \to \mathbb{R}$ so that u + iv is analytic.

3. Give an explict biholomorphism from the "wedge" $\{z : 0 < \arg(z) < \pi/2\}$ onto the open unit disk.

4. Evaluate the integral, and justify each step.

$$\int_{-\infty}^{\infty} \frac{x \sin x}{(x^2 + 1)^2} \, dx.$$

5. Let f be an entire function of finite order. Prove that if the order is not an integer, then f must have infinitely many zeros. Does there exist an entire function of infinite order with finitely many zeros? Explain.

6. Assume each g_n is entire and $g_n \to g$ uniformly on compact sets in \mathbb{C} (i.e. $g_n \to g$ in $H(\mathbb{C})$). If each g_n has only real zeros, show that g has only real zeroes.

7. Assume that f and g are analytic and nonvanishing on $\{z \in \mathbb{C} : |z| < 2\}$ and that |f(z)| = |g(z)| when |z| = 1. Show that there is a constant $\lambda \in \mathbb{C}$ with $|\lambda| = 1$ and $f(z) = \lambda g(z)$ for all $z \in B_2(0)$.

8. Assume that f is entire, and for some integer n > 0,

$$\lim_{n \to \infty} \frac{f(z)}{z^n} = c$$

for some finite, nonzero complex number c. What can you say about f?