Ph.D. Qualifying Exam in Complex Analysis

Give complete proofs and computations. Partial credit will be given where justified. In the following, \mathbb{C} denotes the set of complex numbers and $D=\{z \in \mathbb{C}| | z \mid<1\}$.

1) Assume that f is an entire function with $f(0)=0$. Consider the family of functions $\left\{f_{n}\right\}$ where f_{n} is the $n^{\text {th }}$ iterate of f, i.e. $f_{n}=f \circ f \circ \cdots \circ f$ (n times).
(a) If $\left|f^{\prime}(0)\right|<1$, show there is a open set U containing zero so that the family $\left\{f_{n}\right\}$ is normal when restricted to U.
(b) If $\left|f^{\prime}(0)\right|>1$, show there is no open set U containing zero so that the family $\left\{f_{n}\right\}$ is normal when restricted to U.
2) Let G and G^{\prime} be open, simply connected proper subsets of \mathbb{C}. Show that for any pair of points $p \in G$ and $p^{\prime} \in G^{\prime}$ there is a bijective, analytic function $f: G \rightarrow G^{\prime}$ with $f(p)=p^{\prime}$.
3) (a) Show that

$$
\prod_{n=2}^{\infty}\left(1-\frac{1}{n^{2}}\right)=\frac{1}{2}
$$

(b) For which values of z does the following product converge?

$$
\prod_{n=0}^{\infty}\left(1+z^{3 n}\right)
$$

4) Find an explicit biholomorphism from the semidisk $E:=\{z| | z \mid<1, \operatorname{Re}(z)>$
$0\}$ onto the unit disk D.
5) Let $0<a<1$. Evaluate the integral

$$
\int_{0}^{\infty} \frac{x^{a-1}}{1+x} d x
$$

6) Let f be an entire function of finite order. Prove that if the order is not an integer, then f must have infinitely many zeros. Does there exist an entire function of infinite order with finitely many zeros? Explain.
7) Let f be entire and assume that there exist $M, R>0$ and $n \in \mathbb{N}$ such that $|f(z)| \leq M|z|^{n}$ for all $z \in \mathbb{C} \backslash B(0 ; R)$. Prove that f is a polynomial of degree less than or equal to n.
8) Let f have a power series expansion about 0 with radius of convergence 1 . Assume, in addition, that all of the coefficients of this power series expansion are greater than or equal to zero. Prove that 1 must be a singular point for f.
