1. Let \overline{D} be the closure of the unit disk. Assume $f: \overline{D} \to \mathbb{C}$ is continuous with f analytic on D, |f(z)| > 3 for |z| = 1, and f(0) = 1 - 2i. Must f have a zero in the unit disk? Prove your answer is correct.

2. Let G be a simply connected region. A function $f: G \to G$ is said to be biholomorphic if f is bijective, analytic, and f^{-1} is also analytic. If z_1, z_2 are distinct elements of G and $f_1, f_2: G \to G$ are biholomorphisms with $f_1(z_1) = f_2(z_1)$ and $f_1(z_2) = f_2(z_2)$, prove that $f_1 = f_2$.

3. Assume that f is entire, f(0) = 3 + 4i, and $|f(z)| \le 5$ when |z| < 1. What is f'(0)?

4. Let \mathcal{F} be the collection of analytic mappings of open unit disk D into $\{Re(z) > 0\}$ such that f(0) = 1. Show that \mathcal{F} is a normal family.

5. Let h_n be a sequence of harmonic functions on the connected open set G and assume that $h_n \to h$ uniformly on compact subsets of G. Show that h is harmonic.

6. Assume that f and g are entire and for all $z \in \mathbb{C}$, $|f(z)| \leq |g(z)|$. Show that for some constant c with $|c| \leq 1$, f = cg.

7. Assume that f is a meromorphic function on \mathbb{C} . A complex number w is called a *period* of f if f(z+w) = f(z) for all $z \in \mathbb{C}$.

(a) If w_1 and w_2 are periods of f, show that for all integers n_1 and n_2 , $n_1w_1 + n_2w_2$ is also a period of f.

(b) If G is a bounded region of \mathbb{C} , show that f has at most finitely many periods in G.

8. Let p be the polynomial $p(z) = a_0 + a_1 z + \dots + a_n z^n$. Show that for each $j = 0, 1, \dots, n$,

$$|a_j| \le \max\{|p(z)| : |z| = 1\}.$$
(1)