Ph.D. Exam: Numerical Analysis, May, 2020.

Do 4 (four) of the first 5 (1-5) and 4 (four) of the last 5 problems (6-10).

- (a) Let A ∈ C^{m×n}. Prove or give a counterexample: Every matrix norm that is induced by a vector norm satisfies the submultiplicative property ||AB|| ≤ ||A|| ||B||. If you prove this, make sure to justify each nontrivial step.
 - (b) Let $A \in \mathbb{C}^{m \times m}$. Prove that $||A||_2 = (\rho(A^*A))^{1/2}$, where $\rho(A)$ is the spectral radius of A.
- **2.** Suppose *A* is Hermitian positive definite.
 - (a) Prove that each principal submatrix of A is Hermitian positive definite.
 - (b) Prove that an element of A with largest magnitude lies on the diagonal.
 - (c) Prove that A has a Cholesky decomposition.
- **3.** Let $A \in \mathbb{C}^{m \times m}$ be Hermetian.
 - (a) Show that all eigenvalues of A are real.
 - (b) Define the stationary iterative method (a.k.a. fixed point method)

$$x^{(k+1)} = Ax^{(k)} + b. (1)$$

Suppose (1) has fixed-point x, namely x satisfies x = Ax+b. Show the iteration (1) converges to x from any starting guess $x^{(0)}$, that is $x^{(k)} \to x$ as $k \to \infty$, if and only if the eigenvalues λ_i of A satisfy $|\lambda_i| < 1$, i = 1, ..., m. You may use the fact that Hermetian matrix A is unitarily diagonalizable.

4. Suppose the 5×5 symmetric matrix A has eigenvalues known to within the given tolerances.

$$\begin{aligned} 3.5 &> \lambda_1 > 2.5\\ 2.0 &> \lambda_2 > 1.0\\ 1.0 &> \lambda_3 > -1.0\\ -1.0 &> \lambda_4 > -2.0\\ -2.5 &> \lambda_5 > -3.5. \end{aligned}$$

- (a) Describe how shifting can be used so that the power method can be used to compute λ_1 with guaranteed convergence. Clearly explain your choice of shift.
- (b) Provide an upper bound for the convergence rate using the shift you chose in (a) for λ_1 . Is there another shift that would decrease this worst-case convergence rate?
- 5. For x, y > 0, consider computing $f(x, y) = \sqrt{y + x^2} \sqrt{y}$ in floating-point arithmetic with machine precision ϵ_m .
 - (a) Explain the difficulties in computing f(x, y), if $x \ll y$. What are the absolute and relative errors if $x^2/y < \epsilon_m$, if f(x, y) is computed directly from the form given above?
 - (b) Suppose $x^2/y < \epsilon_m$. Describe a way to compute f(x, y) with more accuracy in this situation.

6. Let $\alpha > 0$. For (i) p = 2; (ii) $p = \infty$, find the constant c_p that minimizes

$$E_p(c) = \|t^{\alpha} - c\|_p = \left(\int_0^1 |t^{\alpha} - c|^p \, \mathrm{d}\, t\right)^{1/p},$$

and find $E_p(c_p)$, for each of those values of p.

- 7. Let $\{\phi_k\}_{k=0}^{m+1}$ be the set of monic orthogonal polynomials with respect to inner product $(u, v) = \int_a^b u(x)v(x)w(x) \, \mathrm{d} x$. Let $\phi_{-1} = 0$ and $\phi_0 = 1$.
 - (a) Find expressions for constants α_k and β_k to determine a 3-term recurrence relation of the form

$$\phi_{k+1}(x) = (x - \alpha_k)\phi_k - \beta_k\phi_{k-1}(x), \ k = 0, \dots, m.$$

- (b) Use the above relation to determine ϕ_1, ϕ_2 and ϕ_3 , using the inner-product $(u, v) = \int_0^1 u(x)v(x) \, \mathrm{d} x$.
- 8. Consider finding a zero of function $f: D \subseteq \mathbb{R}^n \to \mathbb{R}^n$ that can be written as the sum of a linear and nonlinear part

$$f(x) = Bx + G(x),$$

where B is a nonsingular matrix and $G: D \subseteq \mathbb{R}^n \to \mathbb{R}^n$ is some nonlinear function. At a point x_k consider an affine model $M_k(x) = a_k + A_k(x - x_k)$, where the quantities $a_k \in \mathbb{R}^n$ and $A_k \in \mathbb{R}^{n \times n}$ are to be determined.

(a) Determine a_k and A_k so that the following conditions hold:

$$M_k(x_k) = f(x_k)$$
 and $M'_k(x_k) = B$.

- (b) Derive the iteration obtained by defining x_{k+1} as the zero of $M_k(x)$.
- **9.** Let $f \in C^{\infty}(a, b)$. Let $x_0 < x_1 < x_2$ be three points in [a, b] that are not necessarily equally spaced.
 - (a) Based the quadratic interpolant p_2 which satisfies $p_2(x_0) = f(x_0)$, $p_2(x_1) = f(x_1)$ and $p_2(x_2) = f(x_2)$, find the centered finite difference approximations to $f'(x_1)$ and $f''(x_1)$ (you should explicitly show how the difference approximations are derived from the interpolant).
 - (b) Derive an expression for the error, $f'(x_1) p'_2(x_1)$.
- 10. (a) For $f \in C^{\infty}(a, b)$, the composite trapezoidal quadrature rule with n subintervals with length h = (b a)/n satisfies

$$\left| \int_{a}^{b} f(x) \, \mathrm{d} \, x - I_{T,n} \right| = a_2 h^2 + a_4 h^4 + a_6 h^6 + \dots$$

where the coefficients a_2, a_4, \ldots , do not depend on n.

Find and inductively prove an expression for the kth Richardson extrapolant I_k of $I_0 \coloneqq I_{T,n}$.

(b) Consider a quadrature formula of the type

$$\int_0^1 f(x) \, \mathrm{d}\, x \approx \alpha f(x_1) + \beta [f(1) - f(0)].$$

Determine α, β and x_1 such that the degree of exactness is as large as possible. What is the maximum degree of exactness?