
Variational Analysis/Numerical Optimization PhD Qualifier – May 6, 2025

Do 8 problems, 4 from problems 1–5 and 4 from problems 6–10.

Call 352-256-9514 if any questions arise.

1. Recall that f : Rn → R is convex if and only if

f [(1− α)x+ αy] ≤ (1− α)f(x) + αf(y) for all x,y ∈ Rn and α ∈ [0, 1].

(a) If f is continuously differentiable, then show that f is convex if and only if

f(y) ≥ f(x) +∇f(x)(y − x) for all x,y ∈ Rn.

(b) If f is twice continuously differentiable, then show that f is convex if and only if
∇2f is positive semidefinite on Rn.

2. Suppose that Φ : K → Rn is continously differentiable on K ⊂ Rn.

(a) If K is a convex set, then show that

∥Φ(x)−Φ(y)∥ ≤ µ∥x− y∥

for all x and y ∈ K where µ is the supremum of the singular values of ∇Φ over
K.

(b) If Φ is a contraction on K, where K is a closed set, and Φ(x) ∈ K for each x ∈ K,
then then show that Φ has a unique fixed point in K.

3. Let U and V ∈ Rn×m and M ∈ Rn×n with M invertible.

(a) If I+VTM−1U is invertible, then show that M+UVT is invertible with

(M+UVT)−1 = M−1 −M−1U(I+VTM−1U)−1VTM−1.

(b) If U = V = A ∈ Rn×m where the columns of A are linearly independent, and
M = Q, a symmetric matrix, then show that

(Q+pAAT)(I+pAAT)−1 = Q0+O(1/p), where Q0 = Q+(I−Q)[A(ATA)−1AT].

4. Consider the following quadratic program:

min q(x) :=
n∑

i=1

0.5x2
i + cixi subject to aTx = b, x ≥ 0, (QP)

where c and a ∈ Rn, a ≥ 0, and b > 0 is a scalar.
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(a) Develop an algorithm for solving (QP) by maximizing the dual function

L(λ) = inf {q(x) + λ(aTx− b) : x ≥ 0}

over the dual multiplier λ. Here, the constraint K in the dual function is taken
as K = {x ∈ Rn : x ≥ 0}.

(b) Given the optimal λ for the dual problem, what is the solution of the primal
problem?

5. Consider the primal problem

min f(x) subject to Ax− b = 0, g(x) ≤ 0, (P)

where f : Rn → R and the components of g : Rn → Rl are convex and continuously
differentiable, A ∈ Rm×n, and b ∈ Rm. The dual problem is

max L(λ,µ) subject to λ ∈ Rm, µ ∈ Rl, µ ≥ 0, (D)

where

L(λ,µ) = inf {L(x,λ,µ) : x ∈ Rn},
L(x,λ,µ) = f(x) + λT(Ax− b) + µTg(x).

(a) Show that if (P) has a local minimizer x∗, then x∗ is a global minimizer for
(P). Moreover, if the first-order optimality conditions hold at x∗, then there is a
solution to (D) with no duality gap.

(b) Returning to (QP) of problem 4, show that there is no duality gap. You may
wish to consider both the set

S = {(r, s) ∈ R2 : r ≥ q(x) and s = aTx− b for some x ≥ 0},

and the point (q∗, 0) where q∗ is the optimal cost for (QP). Explain why this
point does not lie in the interior of S. Use the separating hyperplane theorem to
separate S and the point, and then analyze the resulting inequality.

6. Consider the initial-value problem

ẋ(t) = f(x(t),u(t)), x(0) = a

where a ∈ Rn, f : Bδ(a) × U → Rn with U ⊂ Rm a compact set and δ > 0. It is
assumed that f is continuous on Bδ(a) × U and uniformly Lipschitz continuous in its
first argument with Lipschitz constant L satisfying

|f(x1, u)− f(x2, u)| ≤ L|x1 − x2|

for all x1, x2 ∈ Bδ(a) and u ∈ U . If ϵ = δ/M where

M = max {|f(x, u)| : x ∈ Bδ(a), u ∈ U},

then show that the initial-value problem has a unique, absolutely continuous solution
on the interval [0, ϵ] with x(t) ∈ Bδ(a) for all t ∈ [0, ϵ].
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7. Consider the equation

(P (x)u′(x))′ = Q(x)u(x), x ∈ [0, 1], (E)

where Q is continuous and P is continuously differentiable and strictly positive on [0, 1].
Show that if the solution to the initial-value problem for (E) with u(0) = 0 and u′(0) =
1 is strictly positive on the half-open interval (0, 1], then there exists a strictly positive
solution to the second-order differential equation (E) (without boundary conditions at
x = 0 or x = 1).

8. Consider the variational problem

min

∫ 1

0

1

2
u′(x)2 + eu(x)dx subject to u ∈ H1

0.

(a) What is the first-order necessary optimality condition (Euler equation) for this
variational problem?

(b) Consider a uniform mesh xk = kh where h = 1/N ; let uk denote an approximation
to u(xk). Of course, u0 = uN = 0. Give a finite difference approximation in terms
u1, . . . , uN−1 to the solution of the Euler equation.

(c) Let F(u) denote the finite difference system where u = (u1, u2, . . . , uN−1)
T ∈

RN−1, and let u∗ denote the vector formed by evaluating the solution of the Euler
equation at the mesh points x1, x2, . . . , xN−1. Obtain a bound for the components
of F(u∗) in terms of the mesh spacing h.

9. Consider the initial-value problem

ẋ(t) = A(t)x(t) + u(t), x(0) = 0,

where x : [0, 1] → Rn and A ∈ L∞([0, 1];Rn×n).

(a) Assuming u ∈ L2, obtain a bound for the sup-norm of x in terms of the L2 norm
of u.

(b) Let Ω : H1
0 → R be defined by

Ω(h) =
1

2

∫ 1

0

r2(x) dx where r(x) = h′(x) + w(x)h(x).

Show that there exists β > 0 such that

Ω(h) ≥ β(∥h∥2 + ∥h′∥2) for all h ∈ H1
0,

where ∥ · ∥ is the L2 norm.
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(c) Consider the quadratic programming problem

min
1

2
xTRx+ bTx subject to x ∈ K,

where K ⊂ Rn is a closed convex set and R ∈ Rn×n is positive definite with
smallest eigenvalue α > 0. Show that the solutions ui, i = 1, 2, associated with
b = bi, i = 1, 2 respectively, satisfy

∥u1 − u2∥ ≤ ∥b1 − b2∥/α.

10. Consider the following control problem:

min

∫ 1

0

1

2
u2(x) + y(x) dx subject to y′(x) = u(x), y(0) = 0, u(x) ≥ ℓ(x),

where ℓ(x) is a given lower bound for the control u(x) at each x ∈ [0, 1].

(a) What is the first-order optimality condition (Pontryagin minimum principle) for
this problem?

(b) What is the solution of the control problem?
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