Variational Analysis/Numerical Optimization PhD Qualifier — May 6, 2025
Do 8 problems, 4 from problems 1-5 and 4 from problems 6-10.
Call 352-256-9514 if any questions arise.

1. Recall that f: R" — R is convex if and only if
fll—a)x+ay] < (1 —a)f(x) +af(y) foralx,y€R"and a € [0,1].
(a) If f is continuously differentiable, then show that f is convex if and only if
f(y) > f(x) +Vf(x)(y —x) forallx,y € R"

(b) If f is twice continuously differentiable, then show that f is convex if and only if
V2 f is positive semidefinite on R™.

2. Suppose that ® : L — R" is continously differentiable on K C R".

(a) If K is a convex set, then show that

|®(x) = @(y)l| < plx -yl

for all x and y € K where p is the supremum of the singular values of V& over

K.

(b) If @ is a contraction on /C, where K is a closed set, and ®(x) € K for each x € K,
then then show that ® has a unique fixed point in .

3. Let U and V € R™™ and M € R™" with M invertible.
(a) If I+ VTM~1U is invertible, then show that M + UV is invertible with
M+UVH ' =M'-M'UTI+V MU'V M

(b) f U =V = A € R"™™ where the columns of A are linearly independent, and
M = Q, a symmetric matrix, then show that

(Q+pAAT)(I+pAAT)™ = Qu+O(1/p), where Qy = Q+(I-Q)[A(ATA)'AT].

4. Consider the following quadratic program:

min ¢(x) := ZO.5$? + ¢;z; subject toa'x =b, x > 0, (QP)
i=1

where c and a € R”, a > 0, and b > 0 is a scalar.



(a) Develop an algorithm for solving (QP) by maximizing the dual function
L(\) = inf {¢(x)+ Aa"x —b):x > 0}

over the dual multiplier A\. Here, the constraint /C in the dual function is taken
as K ={x e R": x> 0}.

(b) Given the optimal A for the dual problem, what is the solution of the primal
problem?

5. Consider the primal problem
min f(x) subject to Ax —b =0, g(x) <0, (P)

where f : R® — R and the components of g : R® — R! are convex and continuously
differentiable, A € R™*" and b € R™. The dual problem is

max L(X\,p) subject to A € R™, p € R pu>0, (D)
where
LA, p) = inf {L(x, A, p):x €R"},
Lix,Ap) = f(x)+AT(Ax—b)+p'g(x).

(a) Show that if (P) has a local minimizer x*, then x* is a global minimizer for
(P). Moreover, if the first-order optimality conditions hold at x*, then there is a
solution to (D) with no duality gap.

(b) Returning to (QP) of problem 4, show that there is no duality gap. You may
wish to consider both the set

S={(r,s) €R*:r > q(x) and s = a'x — b for some x > 0},

and the point (¢*,0) where ¢* is the optimal cost for (QP). Explain why this
point does not lie in the interior of S. Use the separating hyperplane theorem to
separate S and the point, and then analyze the resulting inequality.

6. Consider the initial-value problem
x(t) = £(x(t),u(t)), x(0)=a

where a € R™, f : Bs(a) x U — R" with &4 C R™ a compact set and 6 > 0. It is
assumed that f is continuous on Bs(a) x U and uniformly Lipschitz continuous in its
first argument with Lipschitz constant L satisfying

If(x1, u) — f(x2, u)| < L|x; — x3|
for all x;, x9 € Bs(a) and u € Y. If ¢ = /M where
M = max {|f(x, u)| : x € Bs(a), u e U},

then show that the initial-value problem has a unique, absolutely continuous solution
on the interval [0, €] with x(¢) € Bs(a) for all t € [0, €].
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7. Consider the equation

(P(z)u'(2)) = Q@)u(z), = €[0,1], (E)

where @ is continuous and P is continuously differentiable and strictly positive on [0, 1].
Show that if the solution to the initial-value problem for (E) with «(0) = 0 and «'(0) =
1 is strictly positive on the half-open interval (0, 1], then there exists a strictly positive
solution to the second-order differential equation (E) (without boundary conditions at
r=0orz=1).

8. Consider the variational problem
"1
min / §u’(x)2 + e"“@dg  subject to u € Hy.
0

(a) What is the first-order necessary optimality condition (Euler equation) for this
variational problem?

(b) Consider a uniform mesh z;, = kh where h = 1/N’; let uy, denote an approximation
to u(zg). Of course, ug = uy = 0. Give a finite difference approximation in terms
Uy, ..., un_1 to the solution of the Euler equation.

(c) Let F(u) denote the finite difference system where u = (uy,us,...,uy_1)" €
RY=1 and let u* denote the vector formed by evaluating the solution of the Euler
equation at the mesh points x1,zs, ..., xxy_1. Obtain a bound for the components
of F(u*) in terms of the mesh spacing h.

9. Consider the initial-value problem
X(t) = A(t)x(t) +u(t), x(0)=0,
where x : [0,1] = R™ and A € £=(][0, 1]; R™*™).

(a) Assuming u € £? obtain a bound for the sup-norm of x in terms of the L? norm
of u.

(b) Let Q: H} — R be defined by

Q(h) = %/0 r*(z) dv  where r(z) = h'(z) + w(x)h(z).

Show that there exists 5 > 0 such that
Q(h) = BRI+ [[7]1*)  for all h € Hy,

where || - || is the £? norm.



(c) Consider the quadratic programming problem
1
min éxTRx +b"x subject to x € K,

where K C R" is a closed convex set and R € R™"™ is positive definite with
smallest eigenvalue a > 0. Show that the solutions u;, i = 1,2, associated with
b = b;, i = 1, 2 respectively, satisfy

[ug —uz < /by — bal|/c.

10. Consider the following control problem:

min/0 %U2(l’> +y(x) dz subject to y'(x) = u(zx), y(0) =0, u(zx) > {(z),

where ((z) is a given lower bound for the control u(x) at each = € [0, 1].

(a) What is the first-order optimality condition (Pontryagin minimum principle) for
this problem?

(b) What is the solution of the control problem?



