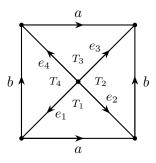
Topology Ph.D. Exam May 2023

Work the following problems and show all your work. Support all statements to the best of your ability. Work each problem on a separate sheet of paper.

- 1. Let X be a set. A filter base at $x \in X$ is a nonempty collection \mathcal{U}_x of subsets of X containing x such that whenever $U, V \in \mathcal{U}_x$ there exists $W \in \mathcal{U}_x$ with $W \subset U \cap V$. Assume that X has a filter base at each $x \in X$ and that if $U \in \mathcal{U}_x$ and $y \in U$ then $U \in \mathcal{U}_y$. Prove that $\mathcal{B} = \bigcup_{x \in X} \mathcal{U}_x$ is a base for a topology.
- 2. Consider the torus $T = S^1 \times S^1$ with the following Δ -complex structure.



- (a) Define a 2-chain that you can show is a cycle and which generates $H_2(T)$. The resulting homology class is called a *fundamental class* of T.
- (b) Define 1-cochains that you can show are cocyles and which generate $H^1(T)$.
- (c) Compute a cup product which produces a cohomology class (Kronecker) dual to a fundamental class.
- 3. Show that the 2-sphere S^2 is not a retract of the real projective plane \mathbb{RP}^2 , as well as that \mathbb{RP}^2 is not a retract of S^2 .
- 4. Assume n > m. Show that there are no maps from \mathbb{CP}^n to \mathbb{CP}^m that induces a nontrivial map $H^2(\mathbb{CP}^m) \to H^2(\mathbb{CP}^n)$.
- 5. A map $i: A \to X$ has the homotopy extension property (HEP) for the space Y if for each homotopy $h: A \times I \to Y$ and each map $f: X \to Y$ with f(i(a)) = h(a, 0) there exists a homotopy $H: X \times I \to Y$ with H(x, 0) = f(x) for all $x \in X$ and H(i(a), t) = h(a, t) for all $a \in A$ and all $t \in I$. We call H an extension of h with initial condition f. The map $i: A \to X$ is a cofibration if it has the HEP for all spaces.

The mapping cylinder of i, denoted Z(i) is the pushout of $i : A \to X$ and the inclusion $A \to A \times I$ given by $a \mapsto (a, 0)$.

Prove that the following three statements about i are equivalent

- (a) i is a cofibration.
- (b) *i* has the HEP for the mapping cylinder Z(i).
- (c) Z(i) is a retract of $X \times I$.

Answer the following with complete definitions or statements or short proofs.

- 6. Give the definition of a pushout and prove that if it exists then it is unique up to isomorphism.
- 7. The Klein bottle, K, may be obtained by taking two Möbius bands, M, and identifying their boundary, $K = M \cup_{\partial M} M$. Apply the Seifert van Kampen theorem to give a presentation of the fundamental group of K.
- 8. Describe all of the two-fold coverings of $S^1 \vee S^1$.
- 9. Prove that for a finite CW-complex $X, H^1(X; \mathbb{Z})$ is torsion-free.
- 10. Compute the Euler characteristic of the manifold $M = S^4 \times \mathbb{RP}^2 \times \mathbb{CP}^3$.
- 11. State the Baire Category Theorem.
- 12. Prove that for $n \neq m$, \mathbb{R}^n is not homeomorphic to \mathbb{R}^m .
- 13. Give an example of a space that is connected but not path connected.
- 14. State the Urysohn Lemma.
- 15. Is \mathbb{R}^{ω} connected in the uniform topology?