Ph.D. Exam: Numerical Analysis, January, 2024 Do 4 (four) of the first 5 (1-5) and 4 (four) of the last 5 problems (6-10).

1. Assume $A \in C^{m \times m}$.
(a) Show that A has a Schur decomposition.
(b) If A has a collection of m linearly dependent eigenvectors, show that A is diagonalizable.
2. Let matrix $A \in \mathcal{C}^{m \times n}$ with $n<m$. Let $b \in \mathcal{C}^{m}$, and let r denote the residual vector $r=b-A x$.
(a) Show that x solves the least squared problem min $\|b-A x\|_{2}$ if and only if $r \in \operatorname{Null}\left(A^{*}\right)$.
(b) Suppose A is full rank, and describe how to find the least squares solution using the QR decomposition of A.
3. Let $A \in C^{m \times n}$, with $m \geq n$ and $\operatorname{rank}(A)=p=n \geq 3$. Let a_{1}, a_{2}, \cdots denote the columns of A.
(a) Using the modified Gramm-Schmidt process, write out expressions for q_{1}, q_{2}, q_{3}, the first three columns of Q in the QR decomposition of A.
(b) Show the vector q_{3} found in part (a) is orthogonal to both q_{1} and q_{2}.
4. Let $\|\cdot\|$ be a subordinate (induced) matrix norm.
(a) If E is a $n \times n$ with $\|E\|<1$, then show $I+E$ is nonsingular and

$$
\left\|(I+E)^{-1}\right\| \leq \frac{1}{1-\|E\|}
$$

(b) If A is a $n \times n$ invertible and E is $n \times n$ with $\left\|A^{-1}\right\|\|E\|<1$, then show $A+E$ is nonsingular and

$$
\left\|(A+E)^{-1}\right\| \leq \frac{\left\|A^{-1}\right\|}{1-\left\|A^{-1}\right\|\|E\|}
$$

5. If q_{1}, \cdots, q_{n} is an orthonormal basis for the subspace $V \subset C^{m \times n}$ with $m>n$, prove that the orthogonal projector onto V is $Q Q^{*}$, where Q is the matrix whose columns are the q_{j}.
6. Derive the three-point formula for the second derivative

$$
f^{\prime \prime}(x)=\frac{1}{h^{2}}\left(f\left(x_{0}-h\right)-2 f\left(x_{0}\right)+f\left(x_{0}+h\right)\right)-\frac{h^{2}}{12} f^{(4)}(\eta)
$$

for some $\eta \in\left[x_{0}-h, x_{0}+h\right]$.
7. Consider

$$
\begin{equation*}
y^{\prime}=4 t y ; \quad t \in[0,1] ; \quad y(0)=2 \tag{1}
\end{equation*}
$$

which has solution $Y(t)=2 e^{2 t^{2}}$.
(a) Derive an error bound for the forward Euler scheme.
(b) Derive the Taylor method of order 2 for (1).
8. Let \mathcal{P}_{1} be the space of polynomials of degree at most one. Using the norm $\|u\|_{2}=\left(\int_{a}^{b} u^{2} d x\right)^{\frac{1}{2}}$.
(a) Find the least-squares approximation to $f(x)=x^{3}$ in \mathcal{P}_{1} over $[a, b]=$ $[-1,1]$.
(b) Find the least-squares approximation to $f(x)=x^{4}$ in \mathcal{P}_{1} over $[a, b]=$ $[0,1]$.
9. Consider the fixed point problem $x=f(x)$ where $f(x)=e^{-(3+x)}$.
(a) Assuming all computations are done in exact arithmetic, find the largest open interval in R where the fixed point iteration $x_{k+1}=f\left(x_{k}\right)$ is ensured to converge.
(b) Write a Newton iteration for finding the fixed point.
10. Suppose $f \in C^{n+1}[a, b]$, and let $p \in \mathcal{P}_{n}$ be a polynomial that interpolates the data $\left\{\left(x_{i}, f\left(x_{i}\right)\right)\right\}_{i=0}^{n}$, where x_{0}, \cdots, x_{n}, are distinct points in $[a, b]$. Consider an arbitrary fixed $x \in[a, b]$, and derive an exact expression for the error $f(x)-$ $p(x)$.

