Ph.D. Exam: Numerical Analysis, May, 2022.

Do 4 (four) of the first 5 (1-5) and 4 (four) of the last 5 problems (6-10).

1. Prove or provide a counterexample to each of the following.
(a) If matrix A is normal and triangular, then it is diagonal.
(b) Every matrix has a Schur factorization.
2. (a) For $v \in \mathbb{C}^{n}$, define $f_{A}(v):=\left(v^{*} A v\right)^{1 / 2}$. Under what condition(s) on $A \in \mathbb{C}^{n \times n}$ is $f_{A}(\cdot)$ a norm on \mathbb{C}^{n} ? (Full credit will only be given for a general condition or conditions. An example is not sufficient.) Prove that $f_{A}(\cdot)$ is a norm on \mathbb{C}^{n} under the condition(s) you require.
(b) Assuming the condition(s) you require in (a), given a matrix A, determine the best constants α and β to satisfy the inequality

$$
\alpha\|v\|_{2} \leq f_{A}(v) \leq \beta\|v\|_{2} .
$$

3. Let $A=U \Sigma V^{*}$ be the singular value decomposition of $A \in \mathbb{C}^{m \times n}$. Let u_{j} denote column j of U.
(a) Suppose $\operatorname{rank}(A)=p<n<m$. Show $\left\{u_{1}, u_{2}, \ldots, u_{p}\right\}$, is a basis for $\operatorname{Col}(A)$, and $\left\{u_{p+1}, u_{p+2}, \ldots, u_{m}\right\}$ is a basis for $\operatorname{Null}\left(A^{*}\right)$.
(b) Suppose A is full rank and $x \neq 0$. Let $\sigma_{i}, i=1, \ldots, n$, be the singular values of A. Show

$$
\sigma_{1} \geq \frac{\|A x\|_{2}}{\|x\|_{2}} \geq \sigma_{n}>0
$$

If you want to use the property that $\|A\|_{2}=\sigma_{1}$, then you must prove that also.
4. Let $\left\{a_{1}, \ldots, a_{n}\right\}$ be a linearly independent set of vectors. Consider the Gram-Schmidt and modified Gram-Schmidt algorithms for computing an orthonormal basis $\left\{q_{1}, \ldots, q_{n}\right\}$ so that $\operatorname{span}\left\{q_{1}, \ldots q_{k}\right\}=\operatorname{span}\left\{a_{1}, \ldots a_{k}\right\}$, for each $k=1, \ldots, n$.
Suppose in computing q_{2}, an orthogonalization error is committed so that $q_{2}^{*} q_{1}=\varepsilon$.
(a) Use the Gram-Schmidt algorithm to compute v_{3} so that $q_{3}=v_{3} /\left\|v_{3}\right\|$. What is $v_{3}^{*} q_{2}$?
(b) Use the modified Gram-Schmidt algorithm to compute v_{3} so that $q_{3}=v_{3} /\left\|v_{3}\right\|$. What is $v_{3}^{*} q_{2}$?
5. Compute the Cholesky decomposition of the following matrix, or explain why it does not exist.

$$
A=\left(\begin{array}{cccc}
1 & 1 / 2 & 2 & 3 \\
1 / 2 & 5 / 16 & 3 / 2 & 5 / 2 \\
2 & 3 / 2 & 17 & 17 \\
3 & 5 / 2 & 17 & 31
\end{array}\right)
$$

6. (a) Let $G=[0,2]$ and

$$
g(x)=\frac{1}{3}\left(\frac{x^{3}}{3}-x^{2}-\frac{5}{4} x+4\right) .
$$

Use the contraction mapping theorem to prove that if $x_{0} \in G$, then the sequence defined by $x_{k+1}=g\left(x_{k}\right),(k=0,1, \cdots)$ converges to a unique fixed point $z \in G$.
(b) Consider the fixed point iteration method $x_{k+1}=g\left(x_{k}\right), k=0,1, \cdots$ for solving the nonlinear equation $f(x)=0$. Consider choosing an iteration function of the form

$$
g(x)=x-a f(x)-b(f(x))^{2}-c(f(x))^{3},
$$

where a, b, and c are parameters to be determined. Assume f is sufficiently differentiable and the corresponding iterations $x_{k+1}=g\left(x_{k}\right)$ converge to a unique fixed point z. Find expressions for the parameters a, b, and c in terms of functions of z such that the iteration method is of fourth order.
7. Consider $f(t)=\sin (t)$.
(a) Without using orthogonal polynomials, find the best approximation $p_{1}(t) \in P^{2}[-1,1]$ to $f(t) \in C[-1,1]$ with respect to the L^{2} norm.
(b) Find the Taylor polynomial approximation $p_{2}(t)$ of degree 3 at $t=0$.
(c) Find the Lagrange polynomial approximation $p_{3}(t)$ of degree 3 that interpolates $f(t)$ at $t=-1,-\frac{1}{3}, \frac{1}{3}, 1$.
8. Given a differentiable function $f(x)$, consider the problem of finding a polynomial $p(x) \in \mathbb{P}^{n}$ such that

$$
p\left(x_{0}\right)=f\left(x_{0}\right), \quad p^{\prime}\left(x_{i}\right)=f^{\prime}\left(x_{i}\right), \quad i=1,2, \cdots, n,
$$

where $x_{i}, i=1,2, \cdots, n$, are distinct nodes. (It is not excluded that $x_{1}=x_{0}$.) Show that the problem has a unique solution and describe how it can be obtained.
9. Let $Q_{m}(f)$ denote the m-point Gaussian quadrature rule over the interval $[a, b]$ and with continuous weight function $\rho(x) \geq 0$, that is,

$$
Q_{m}(f)=\sum_{i=1}^{m} \alpha_{i} f\left(x_{i}\right) \approx J(f)=\int_{a}^{b} \rho(x) f(x) d x .
$$

Show that, if a and b are finite and f is continuous, then $Q_{m}(f) \rightarrow J(f)$ as $m \rightarrow \infty$.
10. Consider numerically solving the initial value problem

$$
y^{\prime}(t)=f(t, y), 0<t \leq t_{f}, \quad \text { with } y(0)=\eta \text {. }
$$

Assume f is sufficiently differentiable and let h denote the step size. Show that all convergent members of the family of methods

$$
y_{n+2}+(\theta-2) y_{n+1}+(1-\theta) y_{n}=\frac{1}{4} h\left[(6+\theta) f_{n+2}+3(\theta-2) f_{n}\right],
$$

parameterized by θ, are also A_{0}-stable.

