Ph.D. Exam: Numerical Analysis, August, 2021. Do 4 (four) of the first 5 (1-5) and 4 (four) of the last 5 problems (6-10).
You may use the following degree n orthogonal polynomials as you like.

n	Legendre	Chebyshev	
0	1	1	
1	x	x	
2	$3x^2 - 1$	$2x^2 - 1$	
3	$5x^3 - 3x$	$4x^3 - 3x$	
4	$35x^4 - 30x^2 + 3$	$8x^4 - 8x^2 + 1$	

1. Suppose $A \in \mathbb{C}^{m \times m}$.

- (a) Suppose A is normal and upper-triangular. Show that A is diagonal.
- (b) Prove that a Schur decomposition diagonalizes A if and only if A is normal.
- 2. (a) Suppose $A \in \mathbb{C}^{m \times n}$ with $m \ge n$. Show that A^*A is nonsingular if and only if A has full rank.
 - (b) Suppose $A \in \mathbb{C}^{m \times m}$, and let a_j be the *j*th column of A. Prove the inequality

 $|\det A| \leq \prod_{j=1}^{m} ||a_j||_2$. (Hint: it may be useful to consider the QR decomposition of A).

3. Define the matrices A and B by

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 4 & 1 \\ 4 & 0 & 1 \\ 0 & 3 & 1 \end{pmatrix}.$$

- (a) Find an economy singular value decomposition of A.
- (b) Find an economy QR decomposition of B.
- 4. Let $\{a_1, \ldots, a_n\}$ be a linearly independent set of vectors. Consider the Gram-Schmidt and modified Gram-Schmidt algorithms for computing an orthonormal basis $\{q_1, \ldots, q_n\}$ so that span $\{q_1, \ldots, q_k\} = \text{span } \{a_1, \ldots, a_k\}$, for each $k = 1, \ldots, n$.

Suppose in computing q_2 , an orthogonalization error is committed so that $q_2^*q_1 = \varepsilon$.

- (a) Use the Gram-Schmidt algorithm to compute v_3 so that $q_3 = v_3/||v_3||$. What is $v_3^*q_2$?
- (b) Use the modified Gram-Schmidt algorithm to compute v_3 so that $q_3 = v_3/||v_3||$. What is $v_3^*q_2$?
- **5.** Suppose $A \in \mathbb{C}^{m \times m}$.
 - (a) Prove Gerschgorin's disk theorem: Let $r_i = \sum_{j=1, j \neq i}^m |a_{ij}|$. Let D_i be the disk in \mathbb{C} with center a_{ii} and radius r_i . If λ is an eigenvalue of A, then $\lambda \in \bigcup_i D_i$; in other words, λ is in at least one of the disks D_i .
 - (b) Suppose A is Hermitian positive definite. Prove that an element of A with largest magnitude lies on the diagonal.

6. Consider the function f(t) on [-1, 1] given by

$$f(t) = \begin{cases} 1+t, & -1 \le t \le 0, \\ 1-t, & 0 \le t \le 1. \end{cases}$$

Let \mathcal{P}_k be the space of polynomials of degree at most k.

- (a) Find the best uniform approximation of f in \mathcal{P}_1 over [-1, 1].
- (b) Find the best approximation of f in \mathcal{P}_1 in the norm induced by the inner-product $(u, v) = \int_{-1}^{1} uv \, \mathrm{d} t$.
- (c) Find the best approximation of f in \mathcal{P}_2 in the norm induced by the inner-product $(u, v) = \int_{-1}^{1} uv \, dt$.
- 7. Let $\{\phi_k\}_{k=0}^{n+1}$ be a set of orthogonal polynomials on [a, b], with respect to the inner-product $(f, g) = \int_a^b f(x)g(x)w(x) \, \mathrm{d} x$, indexed so that ϕ_k is of degree k. Recall that the weight function w for the inner-product satisfies $w \in L^{\infty}$ and w(x) > 0 for almost every $x \in [a, b]$. Prove that ϕ_k has k distinct roots $\{x_j^{(k)}\}_{j=1}^k$, with $x_j^{(k)} \in [a, b], j = 1, \ldots, k$.
- 8. Find $x_0, x_1, x_2 \in [a, b]$, and $c_0, c_1, c_2 \in \mathbb{R}$, that maximize the degree of exactness for the quadrature formula

$$\int_{a}^{b} f(x) \, \mathrm{d} x \approx c_0 f(x_0) + c_1 f(x_1) + c_2 f(x_2).$$

9. The Littlewood-Salem-Izumi constant α_0 is the unique solution $\alpha_0 \in (0, 1)$ of

$$\int_{0}^{3\pi/2} \frac{\cos(t)}{t^{\alpha}} \, \mathrm{d} t = 0.$$

Describe how you could use Newton's method together with a composite 2 point Gauss quadrature rule over N subintervals to approximate α_0 . Be specific about how each function used in the Newton method is defined, and be specific about how the nodes and weights for the quadrature rule are defined.

- **10.** Consider the ODE y' = f(x, y) on an interval $a \le x \le b$, with h = (b-a)/N for some given value of N.
 - (a) Suppose f is C^1 on [a, b]. Compute the local truncation error (also called truncation error) for the forward Euler method $y_{k+1} = y_k + hf(x_k, y_k)$.
 - (b) Suppose $f = y^{\lambda}$ and y(a) = 1. For what values of λ will the forward Euler method converge for h small enough? You are not required to state how small h needs to be. If your solution requires any additional assumptions, they should be clearly stated.