Numerical Analysis Exam: August, 2019 Do 4 (four) problems.

1. Consider using Newton's method to find $x \in \mathbb{R}^n$ such that F(x) = 0, for $F : D \subseteq \mathbb{R}^n \to \mathbb{R}^n$, where D is open and convex and F is continuously differentiable on D.

Suppose x^* satisfies $F(x^*) = 0$; and J(x), the Jacobian of F evaluated at x satisfies $||J^{-1}(x)|| \le \mu$ for some number $\mu > 0$ for all x in a convex neighborhood $N \subseteq D$ that contains x^* .

- (a) Assuming there is a constant $0 < \theta < 1$ for which $||J(x) J(y)|| \le \theta/\mu$ for all $x, y \in N$, show that $\{x_k\}$ converges at least linearly to x^* whenever $x_0 \in N$.
- (b) Assuming there is a constant κ such that $||J(y) J(x)|| \le \kappa ||y x||$ for each $x, y \in N$, show that $\{x_k\}$ converges quadratically to x^* whenever $x_0 \in N$.
- **2.** Consider the data points $(x_1, y_1) = (0, -1), (x_2, y_2) = (1, 3), (x_3, y_3) = (2, 2).$
 - (a) Construct the both the Newton and Lagrange forms of the interpolating polynomial through (x_1, y_1) , (x_2, y_2) , (x_3, y_3) (each can be left in the form of a linear combination of basis functions, but each basis function and coefficient should be explicitly shown).
 - (b) Let f(x) = 1/x and show for $x_0, \ldots, x_n \neq 0$ that

$$f[x_0, x_1, \dots, x_n] = (-1)^n \prod_{i=0}^n \frac{1}{x_i}$$

- **3.** The third Chebyshev polynomial T_3 is given by $T_3(x) = 4x^3 3x$.
 - (a) Find the Chebyshev points on $-2 \le x \le 2$.
 - (b) Find the gobal interpolating polynomial on $-2 \le x \le 2$ that interpolates $f(x) = e^x$ at the Chebyshev nodes.
 - (c) Suppose you were given 200 pieces of data, equally spaced on $-2 \le x \le 2$, and you want to approximate values that lie between data points. Explain what kind of interpolant you would use to fit these data, and why.
- 4. Consider the function

$$s(x) = \begin{cases} s_1(x) = (x+1)^3 - 3x, & -1 \le x \le 0\\ s_2(x) = (1-x)^3 + 3x, & 0 \le x \le 1 \end{cases}$$

- (a) Is s(x) a cubic spline? If so, what kind?
- (b) The trapezoid rule for numerical integration over $a \le x \le b$ has an error given by

$$\int_{a}^{b} f(x) \, dx = I_T - \frac{1}{12} (b-a)^3 f''(\eta), \quad \text{for some } \eta \in (a,b)$$

Determine a bound for the error in the composite trapezoid rule assuming [a, b] is broken up into n equally spaced intervals of length h = (b - a)/n.

(c) Use either the midpoint rule or the trapezoid rule with n = 1 then n = 2 to approximate $\int_{-1}^{1} s(x) dx$. Explain which rule you chose to use and why.

- 5. Let $x_0 = a$, $x_1 = a + h$ and $x_2 = b = a + 2h$, and let $f \in C^2[a, b]$.
 - (a) Construct the difference approximation to $f''(x_1)$ based on the \mathcal{P}_2 interpolant of f on [a, b] with interpolation points x_0, x_1, x_2 (you should explicitly show how the difference approximation is derived from the interpolant).
 - (b) The p_2 difference approximation satisfies $|f''(x_1) p''_2(x_1)| \le \frac{Mh^2}{12}$, where M is a constant that depends on f. Suppose the data is noisy and the approximation is based on the values f_i where $f_i f(x_i) = \epsilon_i$ with $|\epsilon_i| < \epsilon$, i = 0, 1, 2, for a given value of ϵ . What is the best accuracy with which $f''(x_1)$ can be approximated? For what value of h is it attained?