Numerical Analysis Exam: August, 2019
 Do 4 (four) problems.

1. Consider using Newton's method to find $x \in \mathbb{R}^{n}$ such that $F(x)=0$, for $F: D \subseteq R^{n} \rightarrow \mathbb{R}^{n}$, where D is open and convex and F is continuously differentiable on D.
Suppose x^{*} satisfies $F\left(x^{*}\right)=0$; and $J(x)$, the Jacobian of F evaluated at x satisfies $\left\|J^{-1}(x)\right\| \leq \mu$ for some number $\mu>0$ for all x in a convex neighborhood $N \subseteq D$ that contains x^{*}.
(a) Assuming there is a constant $0<\theta<1$ for which $\|J(x)-J(y)\| \leq \theta / \mu$ for all $x, y \in N$, show that $\left\{x_{k}\right\}$ converges at least linearly to x^{*} whenever $x_{0} \in N$.
(b) Assuming there is a constant κ such that $\|J(y)-J(x)\| \leq \kappa\|y-x\|$ for each $x, y \in N$, show that $\left\{x_{k}\right\}$ converges quadratically to x^{*} whenever $x_{0} \in N$.
2. Consider the data points $\left(x_{1}, y_{1}\right)=(0,-1),\left(x_{2}, y_{2}\right)=(1,3),\left(x_{3}, y_{3}\right)=(2,2)$.
(a) Construct the both the Newton and Lagrange forms of the interpolating polynomial through $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$ (each can be left in the form of a linear combination of basis functions, but each basis function and coefficient should be explicitly shown).
(b) Let $f(x)=1 / x$ and show for $x_{0}, \ldots, x_{n} \neq 0$ that

$$
f\left[x_{0}, x_{1}, \ldots, x_{n}\right]=(-1)^{n} \prod_{i=0}^{n} \frac{1}{x_{i}}
$$

3. The third Chebyshev polynomial T_{3} is given by $T_{3}(x)=4 x^{3}-3 x$.
(a) Find the Chebyshev points on $-2 \leq x \leq 2$.
(b) Find the gobal interpolating polynomial on $-2 \leq x \leq 2$ that interpolates $f(x)=e^{x}$ at the Chebyshev nodes.
(c) Suppose you were given 200 pieces of data, equally spaced on $-2 \leq x \leq 2$, and you want to approximate values that lie between data points. Explain what kind of interpolant you would use to fit these data, and why.
4. Consider the function

$$
s(x)=\left\{\begin{array}{l}
s_{1}(x)=(x+1)^{3}-3 x, \quad-1 \leq x \leq 0 \\
s_{2}(x)=(1-x)^{3}+3 x, \quad 0 \leq x \leq 1
\end{array}\right.
$$

(a) Is $s(x)$ a cubic spline? If so, what kind?
(b) The trapezoid rule for numerical integration over $a \leq x \leq b$ has an error given by

$$
\int_{a}^{b} f(x) d x=I_{T}-\frac{1}{12}(b-a)^{3} f^{\prime \prime}(\eta), \quad \text { for some } \eta \in(a, b) .
$$

Determine a bound for the error in the composite trapezoid rule assuming $[a, b]$ is broken up into n equally spaced intervals of length $h=(b-a) / n$.
(c) Use either the midpoint rule or the trapezoid rule with $n=1$ then $n=2$ to approximate $\int_{-1}^{1} s(x) d x$. Explain which rule you chose to use and why.
5. Let $x_{0}=a, x_{1}=a+h$ and $x_{2}=b=a+2 h$, and let $f \in C^{2}[a, b]$.
(a) Construct the difference approximation to $f^{\prime \prime}\left(x_{1}\right)$ based on the \mathcal{P}_{2} interpolant of f on $[a, b]$ with interpolation points x_{0}, x_{1}, x_{2} (you should explicitly show how the difference approximation is derived from the interpolant).
(b) The p_{2} difference approximation satisfies $\left|f^{\prime \prime}\left(x_{1}\right)-p_{2}^{\prime \prime}\left(x_{1}\right)\right| \leq \frac{M h^{2}}{12}$, where M is a constant that depends on f. Suppose the data is noisy and the approximation is based on the values f_{i} where $f_{i}-f\left(x_{i}\right)=\epsilon_{i}$ with $\left|\epsilon_{i}\right|<\epsilon, \quad i=0,1,2$, for a given value of ϵ. What is the best accuracy with which $f^{\prime \prime}\left(x_{1}\right)$ can be approximated? For what value of h is it attained?

