## Ph.D. Exam: Numerical Analysis, August, 2020. <br> Do 4 (four) of the first 5 (1-5) and 4 (four) of the last 5 problems (6-10).

1. Let $A=U \Sigma V^{*}$ be the singular value decomposition of $A \in \mathbb{C}^{m \times n}$ with $\operatorname{rank}(A)=p$ and $p \leq n \leq m$.
(a) Show $\operatorname{Col}\left(A^{*}\right)=\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$, where $v_{1}, \ldots, v_{p}$ are the first $p$ columns of $V$.
(b) Show $\operatorname{Null}(A)=\operatorname{Span}\left\{v_{p+1}, v_{p+2}, \ldots, v_{n}\right\}$.
(c) Find the economy singular value decompositions of the matrix $A$ given by

$$
A=\left(\begin{array}{lll}
1 & 0 & 4 \\
1 & 0 & 4 \\
1 & 0 & 4 \\
1 & 0 & 4
\end{array}\right)
$$

2. Let $A \in \mathbb{C}^{m \times n}$ with $\operatorname{rank}(A)=n<m$. Let $A=Q R$ be the $Q R$ decomposition of $A$, and $A=Q_{1} R_{1}$ be the economy $Q R$ decomposition.
(a) Show that $x \in \mathbb{C}^{n}$ that solves $R_{1} x=Q_{1}^{*} b$ is the least-squares solution to $A x=b$ for $b \in \mathbb{C}^{m}$.
(b) Find the economy QR decomposition of matrix $B$ given by

$$
B=\left(\begin{array}{lll}
3 & 0 & 1 \\
0 & 2 & 0 \\
4 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

3. Let $A$ and $S$ be $n \times n$ matrices, and suppose $S$ is nonsingular.
(a) Show that $A$ and $B=S A S^{-1}$ have the same eigenvalues, and provide the relation between the eigenvectors of $B$ and the eigenvectors of $A$.
(b) Suppose $A$ is skew-Hermitian. Show the eigenvalues of $A$ are pure imaginary.
4. Suppose the $5 \times 5$ symmetric matrix $A$ has eigenvalues known to within the given tolerances.

$$
\begin{aligned}
& 3.5>\lambda_{1}>2.5 \\
& 2.0>\lambda_{2}>1.0 \\
& 1.0>\lambda_{3}>-1.0 \\
&-1.0>\lambda_{4}>-2.0 \\
&-2.5>\lambda_{5}>-3.5 .
\end{aligned}
$$

(a) Describe how shifting can be used so that the power method can be used to compute $\lambda_{1}$ with guaranteed convergence.
(b) What is the shift that provides the best convergence rate in the worst case?
5. For $x, y>0$, consider computing $f(x, y)=\sqrt{y+x^{2}}-\sqrt{y}$ in floating-point arithmetic with machine precision $\epsilon_{m}$.
(a) Explain the difficulties in computing $f(x, y)$, if $x \ll y$. What are the absolute and relative errors if $x^{2} / y<\epsilon_{m}$, if $f(x, y)$ is computed directly from the form given above?
(b) Suppose $x^{2} / y<\epsilon_{m}$. Describe a way to compute $f(x, y)$ with more accuracy in this situation.
6. Let $\left\{\phi_{k}\right\}_{k=0}^{n+1}$ be a set of orthogonal polynomials on $[a, b]$, with respect to the inner-product $(f, g)=\int_{a}^{b} f(x) g(x) w(x) \mathrm{d} x$, indexed so that $\phi_{k}$ is of degree $k$. Prove that $\phi_{k}$ has $k$ distinct roots $\left\{x_{j}^{(k)}\right\}_{j=1}^{k}$, with $x_{j}^{(k)} \in[a, b], j=1, \ldots, k$.
7. Consider the interval [ $a, b$ ] with the partition $a=x_{1}<x_{2}<\cdots<x_{n}<x_{n+1}=b$. Suppose $s(x)$ is the natural cubic spline that interpolates the data $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n+1}$, and that $g \in C^{2}[a, b]$ interpolates the same data. Show that

$$
\int_{a}^{b}\left(s^{\prime \prime}(x)\right)^{2} \mathrm{~d} x \leq \int_{a}^{b}\left(g^{\prime \prime}(x)\right)^{2} \mathrm{~d} x .
$$

8. (a) Consider the inner product on $C(0,2)$ given by $(f, g)=\int_{0}^{2} f(t) g(t) \mathrm{d} t$. Find three orthonormal polynomials $\phi_{0}, \phi_{1}, \phi_{2}$ on $(0,2)$ with respect to the given inner product such that the degree of $\phi_{n}$ is equal to $n, n=0,1,2$.
(b) Find the nodes $t_{1}$ and $t_{2}$ and weights $w_{1}$ and $w_{2}$ which yield the weighted Gaussian Quadrature formula

$$
\int_{0}^{2} f(t) \mathrm{d} t \approx w_{1} f\left(t_{1}\right)+w_{2} f\left(t_{2}\right)
$$

with degree of exactness $m=3$. You should find the nodes exactly, and may leave the weights $w_{1}, w_{2}$ in integral form.
9. Prove for any $f \in C[a, b]$ and integer $n \geq 0$, that the best uniform approximation of $f$ in $P_{n}$ is unique. You may assume the existence of at least one best uniform approximation of $f$.
10. Suppose $f \in C^{n+1}[a, b]$, and let $p \in \mathcal{P}_{n}$ be a polynomial that interpolates the data $\left\{\left(x_{i}, f\left(x_{i}\right)\right\}_{i=0}^{n}\right.$, where $x_{0}, \ldots, x_{n}$, are distinct points in $[a, b]$. Consider an arbitrary fixed $x \in[a, b]$, and derive an exact expression for the error $f(x)-p(x)$.

