Ph.D. Qualifying Exam in Probability

Carefully justify your answers

There are 7 problems

Problem 1.

Let $X, Y: (\Omega, \mathcal{F}, \mathbb{P}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ be random variables. Prove that

 $\mathbb{P}(X+Y \ge 0) \le \mathbb{P}(X \ge 0) + \mathbb{P}(Y \ge 0).$

Problem 2.

- 1. Give the <u>mathematical</u> definition of:
 - (a) convergence almost sure,
 - (b) convergence in probability,
 - (c) convergence in L^1 ,
 - (d) convergence in distribution.
- 2. For $n \ge 1$, let X_n be uniformly distributed on $\{1, \ldots, n\}$, that is

$$\mathbb{P}(X_n = k) = \frac{1}{n}, \quad k \in \{1, \dots, n\}.$$

Prove that $\{\frac{X_n}{n}\}_{n\geq 1}$ converges to U in distribution, where U is uniform on [0, 1].

Problem 3.

Let $\{X_i\}_{i\geq 1}$ be a sequence of i.i.d. continuous random variables having a uniform distribution on [0, 1]. Define, for $n \geq 1$,

$$Y_n = \max\left(X_1, \ldots, X_n\right)$$

- 1. Find the cumulative distribution function (CDF) of Y_n , $n \ge 1$.
- 2. Compute $\mathbb{E}[Y_n]$ and $\operatorname{Var}(Y_n)$.
- 3. Prove that $\{Y_n\}$ converges to 1 in L^1 . What about almost sure convergence?

Problem 4. Let $\{X_i\}_{i\geq 1}$ be a sequence of i.i.d. random variables with a Poisson distribution of parameter λ .

- 1. Let $n \ge 1$. Without justification, what is the distribution of $X_1 + \cdots + X_n$?
- 2. State the weak and strong law of large numbers for i.i.d random variables.

3. Let $\phi \colon \mathbb{R} \to \mathbb{R}$ be an arbitrary bounded continuous function. Prove that

$$\lim_{n \to +\infty} \sum_{k=0}^{+\infty} e^{-n\lambda} \frac{(n\lambda)^k}{k!} \phi\left(\frac{k}{n}\right) = \phi(\lambda).$$

Problem 5.

- 1. Give the <u>mathematical</u> definition of standard Brownian motion.
- 2. Let $\{B_t\}$ be a standard Brownian motion. Prove that $\{\frac{B_n}{n}\}$ converges to 0 almost surely as $n \to +\infty$ $(n \in \mathbb{N})$.
- 3. Find $\mathbb{P}(B_2 \ge 0, B_1 \le 0)$.

Problem 6.

Let $\{M_n\}_{n\geq 0}$ be a sequence of integrable random variables adapted to a filtration $\{\mathcal{F}_n\}$. Assume that for each bounded stopping time T, $\mathbb{E}[M_T] = \mathbb{E}[M_0]$. Show that $\{M_n\}_{n\geq 0}$ is a martingale.

Problem 7.

Let $\{B_t\}$ be a standard Brownian motion. Define, for $x \in \mathbb{R}$,

$$T_x = \min\{t \ge 0 : B_t = x\}.$$

- 1. Prove that for all $x \in \mathbb{R}$, T_x is finite almost surely (that is, $\mathbb{P}(T_x < +\infty) = 1$).
- 2. Find $\mathbb{P}(T_3 < T_{-1})$. You can use a picture as justification.