Ph.D. Qualifying Exam in Probability

Carefully justify your answers

There are 8 problems

Problem 1.

Give the mathematical definition of:

1. conditional expectation,
2. martingale,
3. Poisson process,
4. standard Brownian motion.

Problem 2.

1. State the weak and strong law of large numbers for i.i.d random variables.
2. Prove the strong law of large numbers under the additional assumption of finite fourth moment $\left(\mathbb{E}\left[X_{1}^{4}\right]<+\infty\right)$.
3. Let $\left\{B_{t}\right\}$ be a standard Brownian motion. Prove that $\left\{\frac{B_{n}}{n}\right\}$ converges to 0 almost surely as $n \rightarrow+\infty(n \in \mathbb{N})$.

Problem 3.

1. Let X be a random variable with a standard Gaussian distribution. Find the probability density function of e^{X}.
2. Let X be a random variable with a standard Cauchy distribution. Find the probability density function of $\frac{1}{X}$.

Problem 4.

1. Let $p \geq 1$. Prove that if X is a random variable, then

$$
\mathbb{E}\left[|X|^{p}\right]=\int_{0}^{+\infty} p x^{p-1} \mathbb{P}(|X| \geq x) d x
$$

2. Let $p \geq 1$. Let X and Y be two independent random variables with $\mathbb{E}[Y]=0$. Show that

$$
\mathbb{E}\left[|X+Y|^{p}\right] \geq \mathbb{E}\left[|X|^{p}\right] .
$$

Problem 5.

Let $\left\{a_{n}\right\}_{n \geq 1}$ be a sequence of real numbers such that $0<\sum_{k=1}^{+\infty}\left|a_{k}\right|^{2}<+\infty$. Denote $\left\|a_{n}\right\|=$ $\sqrt{\sum_{k=1}^{n}\left|a_{k}\right|^{2}}$ and $\|a\|=\sqrt{\sum_{k=1}^{+\infty}\left|a_{k}\right|^{2}}$.

Let $\left\{X_{n}\right\}_{n \geq 1}$ be a sequence of i.i.d. symmetric Bernoulli, that is

$$
\forall k \geq 1, \quad \mathbb{P}\left(X_{k}=1\right)=\mathbb{P}\left(X_{k}=-1\right)=\frac{1}{2}
$$

Denote, for $n \geq 1, S_{n}=\sum_{k=1}^{n} a_{k} X_{k}$, and denote $\mathcal{F}_{n}=\sigma\left\{S_{1}, \ldots, S_{n}\right\}$.

1. Prove that $\left\{S_{n}\right\}$ is an $\left\{\mathcal{F}_{n}\right\}$-martingale.
2. Prove that $\left\{S_{n}\right\}$ converges almost surely.
3. Prove that for all $n \geq 1$, for all $\lambda \in \mathbb{R}$,

$$
\mathbb{E}\left[e^{\lambda S_{n}}\right] \leq e^{\frac{\lambda^{2}\left\|a_{n}\right\|^{2}}{2}}
$$

(Hint: $\frac{e^{x}+e^{-x}}{2} \leq e^{\frac{x^{2}}{2}}$)
4. Use question 3. and the symmetry of S_{n} to prove that for all $n \geq 1$, for all $x \geq 0$,

$$
\mathbb{P}\left(\left|S_{n}\right| \geq x\right) \leq 2 e^{-\frac{x^{2}}{2\left\|a_{n}\right\|^{2}}}
$$

(Hint: The minimum of the function $\lambda \mapsto e^{-\lambda x} e^{\frac{\lambda^{2}\left\|a_{n}\right\|^{2}}{2}}$ is attained at $\lambda=\frac{x}{\left\|a_{n}\right\|^{2}}$)
5. Deduce the Khintchine inequality: $\forall p \geq 1, \forall n \geq 1$,

$$
\mathbb{E}\left[\left|\sum_{k=1}^{n} a_{k} X_{k}\right|^{p}\right]^{\frac{1}{p}} \leq C\left\|a_{n}\right\|,
$$

where C is a numerical constant depending on p only (You do not need to compute C).
(Hint: $\left.\mathbb{E}\left[|X|^{p}\right]=\int_{0}^{+\infty} p x^{p-1} \mathbb{P}(|X| \geq x) d x\right)$

Problem 6.

1. Give the definition of convergence of a sequence of random variables in probability and in distribution.
2. Which mode of convergence is stronger between convergence in probability and in distribution? Prove it.
3. Give a counterexample showing that convergence in probability is not equivalent to convergence in distribution.

Problem 7.

Let $\left\{B_{t}\right\}$ be a standard Brownian motion. Define, for $x \in \mathbb{R}$,

$$
T_{x}=\min \left\{t \geq 0: B_{t}=x\right\}
$$

1. Prove that for all $x \in \mathbb{R}, T_{x}$ is finite almost surely (that is, $\mathbb{P}\left(T_{x}<+\infty\right)=1$).
2. Find $\mathbb{P}\left(T_{-2}<T_{1}\right)$. You can use a picture as justification.

Problem 8.

Let $n \in \mathbb{N}$. Let X_{1}, \ldots, X_{n} be i.i.d. random variables in L_{1}. Find $\mathbb{E}\left[X_{1} \mid X_{1}+\cdots+X_{n}\right]$.

