Ph.D. Qualifying Exam in Probability

Carefully justify your answers

Problem 1.

- 1. State the weak and strong law of large numbers for i.i.d random variables.
- 2. Prove the weak law of large numbers (for i.i.d random variables).
- 3. Prove the strong law of large numbers under the additional assumption of finite fourth moment $(\mathbb{E}[X_1^4] < +\infty)$.

Problem 2.

Let X, Y be independent and uniformly distributed on [0, 1].

- 1. Find the density of the random variable X + Y.
- 2. Find the density of the random variable $\mathbb{E}[X|X+Y]$.

Problem 3.

Let $\{X_n\}$ be a sequence of random variables uniformly bounded, that is, there exists M > 0 such that for all $n \in \mathbb{N}$, $|X_n| \leq M$.

Prove that $\{X_n\}$ converges to 0 in L^1 if and only if $\{X_n\}$ converges to 0 in probability.

Problem 4.

Let $\{X_n\}$ be a sequence of random variables such that for all $n \ge 1$, X_n has a Poisson distribution of parameter n.

Does the random variable

$$\frac{X_n - n}{\sqrt{n}}$$

converges in distribution as $n \to +\infty$? If so, what is the limit? What about convergence in probability? Carefully justify all your answers.

Problem 5.

Let $\{X_n\}$ be a sequence of i.i.d. random variables in L^1 ($\mathbb{E}[|X_1|] < +\infty$). Take $\mathcal{F}_n = \sigma\{X_1, \ldots, X_n\}, n \ge 1$, and denote $S_n = \sum_{k=1}^n X_k, S_0 = 0$.

1. Let τ be an $\{\mathcal{F}_n\}$ -stopping time in L^1 . Prove that S_{τ} is in L^1 , and

$$\mathbb{E}[S_{\tau}] = \mathbb{E}[X_1]\mathbb{E}[\tau].$$

2. Let $\{X_n\}$ be a sequence of i.i.d. random variables such that $\mathbb{P}(X_1 = 1) = \mathbb{P}(X_1 = -1) = \frac{1}{2}$. Denote $S_n = \sum_{k=1}^n X_k$, $S_0 = 0$, and $T = \inf\{n \ge 0 : S_n = 1\}$. Prove that $\mathbb{E}[T] = +\infty$. (One may use question 1.)

Problem 6.

Let X_1, \ldots, X_n be a sequence of i.i.d. random variables in L^1 . Compute $\mathbb{E}[X_1|X_1 + \cdots + X_n]$. <u>**Hint:**</u> for all $i, j \in \{1, \ldots, n\}$, $\mathbb{E}[X_i|X_1 + \cdots + X_n] = \mathbb{E}[X_j|X_1 + \cdots + X_n]$.

Problem 7.

- 1. Give the definition of a standard Brownian motion.
- 2. Let $\{B_t\}$ and $\{\widetilde{B}_t\}$ be two independent standard Brownian motion. Let $\rho \in (0, 1)$. Define, for $t \ge 0$,

$$X_t = \rho B_t + \sqrt{1 - \rho^2} \widetilde{B}_t.$$

Is $\{X_t\}$ a standard Brownian motion? Carefully justify.

Problem 8.

Let $\{B_t\}$ be a standard Brownian motion.

- 1. Fix u > 0. Prove that $M_t = e^{uB_t \frac{1}{2}u^2t}$ is a martingale (with respect to the same filtration as $\{B_t\}$).
- 2. Fix a > 0. Define $T_a = \inf\{t \ge 0 : B_t = a\}$. Prove that $T_a < +\infty$ a.s. and $\mathbb{E}[T_a] = +\infty$. <u>**Hint:**</u> One may find the density of T_a by considering $X_t = \max_{0 \le s \le t} B_s$, and noticing that $\{T_a \le t\} = \{X_t \ge a\}$.