Complex Analysis PhD Examination January 2020

Answer SIX questions in detail.
State carefully any results used without proof.
Throughout, \mathbb{D} is the open unit disc in \mathbb{C}.

1. When $n>1$ is a positive integer, evaluate the integral

$$
\int_{0}^{\infty} \frac{1}{1+x^{n}} \mathrm{~d} x .
$$

2. True or false? There exists a holomorphic function $f: \mathbb{D} \rightarrow \mathbb{C}$ such that $f(1 / n)=f(-1 / n)=1 / n^{3}$ for each integer $n>1$. Prove or disprove.
3. The functions f and g are holomorphic and never zero in \mathbb{D}. Assume that

$$
\frac{f^{\prime}}{f}\left(2^{-n}\right)=\frac{g^{\prime}}{g}\left(2^{-n}\right)
$$

for each positive integer n. Deduce as much as possible about the relationship between f and g.
4. Let f be holomorphic in $\mathbb{D} \backslash\{0\}$ and assume that its derivative f^{\prime} extends holomorphically to \mathbb{D}. Must f itself extend holomorphically to \mathbb{D} ? Explain.
5. Let the continuous function $f: \mathbb{D} \rightarrow \mathbb{C}$ be holomorphic except (perhaps) on the interval $[-1 / 2,1 / 2]$. Prove that f is in fact holomorphic on \mathbb{D}.
6. Let the entire function f never take purely imaginary values. Without using a theorem of Picard, prove that f is constant.
7. Let the entire function f satisfy $|f(z)| \leqslant A+B|z|^{M}$ whenever $|z| \geqslant N$, where A, B, M, N are positive constants. Prove that f is a polynomial.
8. Let f be holomorphic in \mathbb{D}. Assume that for each $z \in \mathbb{D}$ there exists $n=n_{z} \in \mathbb{N}$ such that $f^{(n)}(z)=0$. Prove that f is a polynomial.
9. Prove that if z and w lie in the (open) right half-plane then

$$
\int_{0}^{\infty} e^{-w t} t^{z-1} \mathrm{~d} t=w^{-z} \Gamma(z)
$$

by integrating $e^{-\zeta} \zeta^{z-1}$ around a suitable closed contour.

