1st Year Exam: Numerical Analysis, August, 2020. Do 4 (four) problems.

1. Let $\left\{\phi_{k}\right\}_{k=0}^{n+1}$ be a set of orthogonal polynomials on $[a, b]$, with respect to the inner-product $(f, g)=\int_{a}^{b} f(x) g(x) w(x) \mathrm{d} x$, indexed so that ϕ_{k} is of degree k. Prove that ϕ_{k} has k distinct roots $\left\{x_{j}^{(k)}\right\}_{j=1}^{k}$, with $x_{j}^{(k)} \in[a, b], j=1, \ldots, k$.
2. Consider the interval $[a, b]$ with the partition $a=x_{1}<x_{2}<\cdots<x_{n}<x_{n+1}=b$. Suppose $s(x)$ is the natural cubic spline that interpolates the data $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n+1}$, and that $g \in C^{2}[a, b]$ interpolates the same data. Show that

$$
\int_{a}^{b}\left(s^{\prime \prime}(x)\right)^{2} \mathrm{~d} x \leq \int_{a}^{b}\left(g^{\prime \prime}(x)\right)^{2} \mathrm{~d} x
$$

3. (a) Consider the inner product on $C(0,2)$ given by $(f, g)=\int_{0}^{2} f(t) g(t) \mathrm{d} t$. Find three orthonormal polynomials $\phi_{0}, \phi_{1}, \phi_{2}$ on $(0,2)$ with respect to the given inner product such that the degree of ϕ_{n} is equal to $n, n=0,1,2$.
(b) Find the nodes t_{1} and t_{2} and weights w_{1} and w_{2} which yield the weighted Gaussian Quadrature formula

$$
\int_{0}^{2} f(t) \mathrm{d} t \approx w_{1} f\left(t_{1}\right)+w_{2} f\left(t_{2}\right)
$$

with degree of exactness $m=3$. You should find the nodes exactly, and may leave the weights w_{1}, w_{2} in integral form.
4. Prove for any $f \in C[a, b]$ and integer $n \geq 0$, that the best uniform approximation of f in P_{n} is unique. You may assume the existence of at least one best uniform approximation of f.
5. Suppose $f \in C^{n+1}[a, b]$, and let $p \in \mathcal{P}_{n}$ be a polynomial that interpolates the data $\left\{\left(x_{i}, f\left(x_{i}\right)\right\}_{i=0}^{n}\right.$, where x_{0}, \ldots, x_{n}, are distinct points in $[a, b]$. Consider an arbitrary fixed $x \in[a, b]$, and derive an exact expression for the error $f(x)-p(x)$.

