1st Year Exam: Numerical Analysis, May, 2020. Do 4 (four) problems.

1. Let $\alpha>0$. For (i) $p=2$; (ii) $p=\infty$, find the constant c_{p} that minimizes

$$
E_{p}(c)=\left\|t^{\alpha}-c\right\|_{p}=\left(\int_{0}^{1}\left|t^{\alpha}-c\right|^{p} \mathrm{~d} t\right)^{1 / p}
$$

and find $E_{p}\left(c_{p}\right)$, for each of those values of p.
2. Let $\left\{\phi_{k}\right\}_{k=0}^{m+1}$ be the set of monic orthogonal polynomials with respect to inner product $(u, v)=$ $\int_{a}^{b} u(x) v(x) w(x) \mathrm{d} x$. Let $\phi_{-1}=0$ and $\phi_{0}=1$.
(a) Find expressions for constants α_{k} and β_{k} to determine a 3-term recurrence relation of the form

$$
\phi_{k+1}(x)=\left(x-\alpha_{k}\right) \phi_{k}-\beta_{k} \phi_{k-1}(x), k=0, \ldots, m
$$

(b) Use the above relation to determine ϕ_{1}, ϕ_{2} and ϕ_{3}, using the inner-product $(u, v)=\int_{0}^{1} u(x) v(x) \mathrm{d} x$.
3. Consider finding a zero of function $f: D \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ that can be written as the sum of a linear and nonlinear part

$$
f(x)=B x+G(x)
$$

where B is a nonsingular matrix and $G: D \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is some nonlinear function. At a point x_{k} consider an affine model $M_{k}(x)=a_{k}+A_{k}\left(x-x_{k}\right)$, where the quantities $a_{k} \in \mathbb{R}^{n}$ and $A_{k} \in \mathbb{R}^{n \times n}$ are to be determined.
(a) Determine a_{k} and A_{k} so that the following conditions hold:

$$
M_{k}\left(x_{k}\right)=f\left(x_{k}\right) \text { and } M_{k}^{\prime}\left(x_{k}\right)=B
$$

(b) Derive the iteration obtained by defining x_{k+1} as the zero of $M_{k}(x)$.
4. Let $f \in C^{\infty}(a, b)$. Let $x_{0}<x_{1}<x_{2}$ be three points in $[a, b]$ that are not necessarily equally spaced.
(a) Based the quadratic interpolant p_{2} which satisfies $p_{2}\left(x_{0}\right)=f\left(x_{0}\right), p_{2}\left(x_{1}\right)=f\left(x_{1}\right)$ and $p_{2}\left(x_{2}\right)=f\left(x_{2}\right)$, find the centered finite difference approximations to $f^{\prime}\left(x_{1}\right)$ and $f^{\prime \prime}\left(x_{1}\right)$ (you should explicitly show how the difference approximations are derived from the interpolant).
(b) Derive an expression for the error, $f^{\prime}\left(x_{1}\right)-p_{2}^{\prime}\left(x_{1}\right)$.
5. (a) For $f \in C^{\infty}(a, b)$, the composite trapezoidal quadrature rule with n subintervals with length $h=(b-a) / n$ satisfies

$$
\left|\int_{a}^{b} f(x) \mathrm{d} x-I_{T, n}\right|=a_{2} h^{2}+a_{4} h^{4}+a_{6} h^{6}+\ldots
$$

where the coefficients a_{2}, a_{4}, \ldots, do not depend on n.
Find and inductively prove an expression for the k th Richardson extrapolant I_{k} of $I_{0}:=I_{T, n}$.
(b) Consider a quadrature formula of the type

$$
\int_{0}^{1} f(x) \mathrm{d} x \approx \alpha f\left(x_{1}\right)+\beta[f(1)-f(0)] .
$$

Determine α, β and x_{1} such that the degree of exactness is as large as possible. What is the maximum degree of exactness?

