1st Year Exam: Numerical Analysis, January, 2020. Do 4 (four) problems.

- 1. (a) Starting with the first two Legendre polynomials over [-1, 1], given by $p_0(x) = 1$, and $p_1(x) = x$, find the next three (monic) Legendre polynomials, $p_2(x), p_3(x)$ and $p_4(x)$.
 - (b) Find the nodes t_0, t_1, t_2 and weights w_0, w_1, w_2 which define the Gaussian Quadrature formula

$$\int_{-1}^{1} f(t) \, \mathrm{d} t \approx w_0 f(t_0) + w_1 f(t_1) + w_2 f(t_2),$$

with degree of exactness m = 5. You should find the nodes exactly, and may leave the weights w_0, w_1, w_2 , in integral form.

- **2.** Consider the fixed point problem x = f(x), where $f(x) = e^{-(3+x)}$.
 - (a) Assuming all computations are done in exact arithmetic, find the largest open interval in \mathbb{R} where the fixed-point iteration $x_{k+1} = f(x_k)$ is ensured to converge.
 - (b) Write a Newton iteration for finding the fixed-point.
- **3.** Let \mathcal{P}_1 be the space of polynomials of degree at most one. Using the norm $||u||_2 = \left(\int_a^b u^2 \, \mathrm{d}\,x\right)^{1/2}$
 - (a) Find the least-squares approximation to $f(x) = x^3$ in \mathcal{P}_1 over [a, b] = [-1, 1].
 - (b) Find the least-squares approximation to $f(x) = x^4$ in \mathcal{P}_1 over [a, b] = [0, 1].
- 4. (a) Find a natural cubic spline B_0 on $-1 \le x \le 1$ that satisfies v(-1) = 0, v(0) = 2, and v(1) = 0.
 - (b) Find a natural cubic spline on $-1 \le x \le 2$ that satisfies v(-1) = 0, v(0) = 2, v(1) = 1/2 and v(2) = 0. You may write the solution as $B = B_0 + B_1$, where B_0 is (or is closely related to) the solution to (a), if you like.
- 5. Let $f \in C^{\infty}(a H, a + H)$, and let h < H. Let $x_0 = a h$, $x_1 = a$ and $x_2 = a + h$.
 - (a) Find the finite difference approximation to f''(a) based the quadratic interpolant p_2 which satisfies $p_2(x_0) = f(x_0)$, $p_2(x_1) = f(x_1)$ and $p_2(x_2) = f(x_2)$ (you should explicitly show how the difference approximation is derived from the interpolant).
 - (b) Let $\psi_0(h) = \psi(h)$ be the difference approximation to f''(a) found in part (a). Assume (in exact arithmetic) $\psi(h) \to \psi(0) = f''(a)$ as $h \to 0$, and that $\psi(h)$ has the asymptotic expansion

$$\psi(h) = \psi(0) + a_2h^2 + a_4h^4 + a_6h^6 + \dots$$

Find the general Richardson extrapolation formula for $\psi_k(h)$ based on $\psi_{k-1}(h)$ and $\psi_{k-1}(h/2)$.