1st Year Exam: Numerical Linear Algebra, January, 2020. Do 4 (four) problems.

1. Let $A \in \mathbb{C}^{m \times n}$.
(a) Determine constants α and β such that the following inequality holds for the p and ∞ norms of matrix A, for integers $p \geq 1$. Justify your answer.

$$
\alpha\|A\|_{\infty} \leq\|A\|_{p} \leq \beta\|A\|_{\infty}
$$

(b) Prove or give a counterexample: $\|A\|_{2} \leq\|A\|_{F}$, where $\|A\|_{F}$ is the Frobenius norm of A. If you prove this, make sure to justify each nontrivial step.
2. Suppose A is Hermitian positive definite.
(a) Prove that each principal submatrix of A is Hermitian positive definite.
(b) Prove that an element of A with largest magnitude lies on the diagonal.
(c) Prove that A has a Cholesky decomposition.
3. Define the matrices A and B by

$$
A=\left(\begin{array}{lll}
1 & 2 & 0 \\
1 & 2 & 0 \\
1 & 2 & 0 \\
1 & 2 & 0
\end{array}\right), \quad B=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

(a) Find both full and economy singular value decompositions of A.
(b) Find both full and economy QR decompositions of B.
4. Let $\|\cdot\|$ be a subordinate (induced) matrix norm.
(a) If E is $n \times n$ with $\|E\|<1$, then show $I+E$ is nonsingular and

$$
\left\|(I+E)^{-1}\right\| \leq \frac{1}{1-\|E\|}
$$

(b) If A is $n \times n$ invertible and E is $n \times n$ with $\left\|A^{-1}\right\|\|E\|<1$, then show $A+E$ is nonsingular and

$$
\left\|(A+E)^{-1}\right\| \leq \frac{\left\|A^{-1}\right\|}{1-\left\|A^{-1}\right\|\|E\|}
$$

5. Suppose the linear equation $A x=b$, with

$$
A=\left(\begin{array}{ll}
\delta & 1 \\
1 & 1
\end{array}\right), \quad|\delta|<\epsilon_{m} / 4
$$

is solved on a floating-point system with machine-epsilon ϵ_{m}, using an LU factorization (no pivoting!) followed by forward and back substitution. (You may assume the operations (,,$+- \div, \times$), do not incur any additional errors).
(a) If $b=(1,0)^{T}$, compute the backward error, $\|\hat{b}-b\|_{2} /\|b\|_{2}$, where \hat{b} is the data that satisfies $A \hat{x}=\hat{b}$, and \hat{x} is the computed solution.
(b) Is the result of (a) sufficient to draw any conclusions about the backward-stability of the algorithm used to compute \hat{x} ? Explain.

