First-year Analysis Examination
 Part Two
 August 2020

Answer FOUR questions in detail.
State carefully any results used without proof.

1. The function $f:[0,1] \rightarrow \mathbb{R}$ is Riemann-integrable and vanishes at each point of a dense set. Does it follow that $\int_{0}^{1} f=0$? Proof or counterexample, as appropriate.
2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous. Prove that there exists a sequence $\left(p_{n}\right)$ of polynomials that converges to f both (i) pointwise on \mathbb{R} and (ii) uniformly on each compact set in \mathbb{R} (simultaneously).
3. Let $\mathcal{F} \subseteq C(X)$ be equicontinuous and let B be the set comprising all points of X at which \mathcal{F} is bounded; that is, $a \in B$ exactly when there exists K such that $|f(a)|<K$ whenever $f \in \mathcal{F}$. Prove that $B \subseteq X$ is both closed and open.
4. Let $\left(f_{n}\right)$ be a sequence of measurable real-valued functions on Ω. Prove that each of the following subsets of Ω is measurable:
(i) $P=\left\{\omega:\left(f_{n}(\omega)\right)\right.$ converges to an irrational number $\}$
(ii) $Q=\left\{\omega:\left(f_{n}(\omega)\right)\right.$ converges to a rational number $\}$
(iii) $R=\left\{\omega:\left(f_{n}(\omega)\right)\right.$ converges to a real number $\}$.
5. Let $\left(f_{n}\right)$ be a sequence of bounded, measurable, real-valued functions on Ω and assume that $f_{n} \rightarrow f$ uniformly. Prove that if $\mu(\Omega)<\infty$ then

$$
\int_{\Omega} f_{n} \mathrm{~d} \mu \rightarrow \int_{\Omega} f \mathrm{~d} \mu
$$

and show by example that this can fail if $\mu(\Omega)=\infty$.

