MAA 5229 First-Year Exam, January 2020

Do exactly 4 problems. Work must be presented in a neat and logical fashion in order to receive credit. Do not leave any gaps. When a theorem is used in a proof it must be precisely stated.

1. Let f and $f_{n}(n>0)$ be real-valued functions on $(0,1)$ with $f_{n} \rightarrow f$. Decide (with proof) the truth/falsity of each of the following statements when the convergence of f_{n} to f is (a) pointwise (b) uniform:
(i) if each f_{n} is increasing on $(0,1)$ then so is f;
(ii) if each f_{n} is bounded then so is f.
2. Let $f:[0,1] \times[0,1] \rightarrow \mathbb{R}$ be a continuous function and let $\epsilon>0$. Prove that there exist finitely many continuous functions $g_{1}, \ldots, g_{n}:[0,1] \rightarrow \mathbb{R}$ and $h_{1}, \ldots, h_{n}:[0,1] \rightarrow \mathbb{R}$ such that

$$
\left|f(x, y)-\sum_{j=1}^{n} g_{j}(x) h_{j}(y)\right|<\epsilon \quad \text { for all }(x, y) \in[0,1] \times[0,1] .
$$

3. Let f_{n} be a sequence of nonnegative measurable functions and suppose there is an L^{1} function g such that $f_{n} \leq g$ for all n. Prove that

$$
\limsup _{n \rightarrow \infty} \int f_{n} \leq \int \limsup _{n \rightarrow \infty} f_{n}
$$

Give an example to show the conclusion can fail if the hypothesis $f_{n} \leq g$ is removed.
4. Let (X, \mathscr{M}) be a measurable space and $f_{n}: X \rightarrow \mathbb{R}, n=1,2,3, \ldots$ a sequence of measurable functions. Prove that each of the following subsets of X is measurable:
a) $\left\{x \mid f_{n}(x) \rightarrow+\infty\right\}$;
b) $\left\{x \mid f_{n+1}(x)>f_{n}(x)\right.$ for infinitely many $\left.n\right\}$;
c) $\left\{x \mid f_{n}(x)\right.$ is rational for all $\left.n\right\}$.
5. Let $E \subset[0,1]$ be a Lebesgue measurable set with $m(E)>0$. Prove that there exists a point $0<c<1$ such that

$$
m(E \cap[0, c])=\frac{1}{2} m(E) .
$$

