Do exactly 4 problems. Work must be presented in a neat and logical fashion in order to receive credit. Do not leave any gaps. When a theorem is used in a proof it must be precisely stated.

- 1. Let f and $f_n (n > 0)$ be real-valued functions on (0, 1) with $f_n \to f$. Decide (with proof) the truth/falsity of each of the following statements when the convergence of f_n to f is (a) pointwise (b) uniform:
 - (i) if each f_n is increasing on (0, 1) then so is f;
 - (ii) if each f_n is bounded then so is f.
- 2. Let $f : [0,1] \times [0,1] \to \mathbb{R}$ be a continuous function and let $\epsilon > 0$. Prove that there exist finitely many continuous functions $g_1, \ldots, g_n : [0,1] \to \mathbb{R}$ and $h_1, \ldots, h_n : [0,1] \to \mathbb{R}$ such that

$$\left| f(x,y) - \sum_{j=1}^{n} g_j(x) h_j(y) \right| < \epsilon \quad \text{for all } (x,y) \in [0,1] \times [0,1].$$

3. Let f_n be a sequence of nonnegative measurable functions and suppose there is an L^1 function g such that $f_n \leq g$ for all n. Prove that

$$\limsup_{n \to \infty} \int f_n \le \int \limsup_{n \to \infty} f_n.$$

Give an example to show the conclusion can fail if the hypothesis $f_n \leq g$ is removed.

- 4. Let (X, \mathscr{M}) be a measurable space and $f_n : X \to \mathbb{R}$, n = 1, 2, 3, ... a sequence of measurable functions. Prove that each of the following subsets of X is measurable:
 - a) $\{x \mid f_n(x) \to +\infty\};$
 - b) $\{x \mid f_{n+1}(x) > f_n(x) \text{ for infinitely many } n\};$
 - c) $\{x \mid f_n(x) \text{ is rational for all } n\}.$
- 5. Let $E \subset [0,1]$ be a Lebesgue measurable set with m(E) > 0. Prove that there exists a point 0 < c < 1 such that

$$m(E \cap [0, c]) = \frac{1}{2}m(E).$$