First-year Analysis Examination Part One August 2020

Answer FOUR questions in detail. State carefully any results used without proof.

1. Let (a_n) and (b_n) be bounded real sequences. Define $\liminf a_n$ and $\limsup b_n$. Prove that

 $\liminf(a_n + b_n) \le \liminf a_n + \limsup b_n \le \limsup(a_n + b_n).$

2. Let A be a subset of the metric space M. For each t > 0 let

$$(A)_t = \{ x \in M : (\exists a \in A) \, d(x, a) < t \}$$
$$[A]_t = \{ x \in M : (\exists a \in A) \, d(x, a) \le t \}.$$

Is $\bigcap_{t>0}(A)_t$ equal to the closure of A? Is $\bigcap_{t>0}[A]_t$ equal to the closure of A? Proof or counterexample, as appropriate.

3. Let $f : [0,1] \to [0,1]$ be continuous and assume that for each positive integer *n* there exists $t \in [0,1]$ such that |f(t) - t| < 1/n. Prove that there exists $a \in [0,1]$ such that f(a) = a.

4. Let $f: X \to Y$ be a map between metric spaces, with graph

$$G = \{(x, y) : y = f(x)\} \subseteq X \times Y.$$

Prove that f is continuous if G is compact.

5. The function $f: (-1, 1) \to \mathbb{R}$ is differentiable and its derivative is bounded. Prove that there is a continuous function $F: [-1, 1] \to \mathbb{R}$ with the property that $f = F|_{(-1,1)}$.