Numerical Linear Algebra Exam August, 2016 Do 4 (four) problems

- 1. Define a normal matrix and prove that the following are equivalent.
 - (a) A is normal.
 - (b) A is unitarily diagonalizable.
 - (c) $||A||_F = (\sum |\lambda_i|^2)^{1/2}$, where $\{\lambda_i\}$ are the eigenvalues of A counted with multiplicity.
- 2. Let $\kappa_2(A)$ be the two-norm condition number of the square, non-singular A.
 - (a) Prove that

$$\kappa_2(A) = \frac{\sigma_1}{\sigma_m}$$

where σ_1 and σ_m are the largest and smallest singular values of A, respectively.

- (b) Prove or disprove: If $A = QBQ^*$ with Q unitary, then $\kappa_2(A) = \kappa_2(B)$.
- (c) Prove or disprove: If $A = CBC^{-1}$, then $\kappa_2(A) = \kappa_2(B)$.
- 3. Assume $A \in \mathbb{R}^{m,n}$ with $m \ge n$, $\operatorname{rank}(A) = n$ and $b \in \mathbb{R}^n$.
 - (a) Define the least squares solution to Ax = b.
 - (b) Derive the normal equations for the least squares problem.
 - (c) Prove that $A^T A$ is invertible.
 - (d) Prove that the unique solution to the least squares problem is $(A^T A)^{-1} A^T b$.
 - (e) Describe how to solve the least squares problem using the QR decomposition of A.
- 4. (a) Prove that P is an orthogonal projector if and only if it is Hermitian.
 - (b) Let $\{q_1, q_2, \ldots, q_n\}$ be an orthonormal subset of \mathbb{C}^m . Show that

$$P = \sum_{i=1}^{n} q_i q_i^*$$

is an orthogonal projector with range equal to the span of $\{q_1, q_2, \ldots, q_n\}$

- 5. Assume $A \in \mathbb{R}^{m,m}$
 - (a) Prove that $\langle x, y \rangle_A = x^T A y$ is an inner product on \mathbb{R}^m if and only if A is symmetric and positive definite
 - (b) Assume now that A is symmetric and positive definite. If x_* is the solution to Ax = b and $\{p_1, \ldots, p_m\}$ is an orthonormal basis for \mathbb{R}^m with respect to \langle , \rangle_A and $x_* = \sum c_i p_i$, give a formula for the c_i .