1. Define a normal matrix and prove that the following are equivalent.
(a) A is normal.
(b) A is unitarily diagonalizable.
(c) $\|A\|_{F}=\left(\sum\left|\lambda_{i}\right|^{2}\right)^{1 / 2}$, where $\left\{\lambda_{i}\right\}$ are the eigenvalues of A counted with multiplicity.
2. Let $\kappa_{2}(A)$ be the two-norm condition number of the square, non-singular A.
(a) Prove that

$$
\kappa_{2}(A)=\frac{\sigma_{1}}{\sigma_{m}} .
$$

where σ_{1} and σ_{m} are the largest and smallest singular values of A, respectively.
(b) Prove or disprove: If $A=Q B Q^{*}$ with Q unitary, then $\kappa_{2}(A)=\kappa_{2}(B)$.
(c) Prove or disprove: If $A=C B C^{-1}$, then $\kappa_{2}(A)=\kappa_{2}(B)$.
3. Assume $A \in \mathbb{R}^{m, n}$ with $m \geq n, \operatorname{rank}(A)=n$ and $b \in \mathbb{R}^{n}$.
(a) Define the least squares solution to $A x=b$.
(b) Derive the normal equations for the least squares problem.
(c) Prove that $A^{T} A$ is invertible.
(d) Prove that the unique solution to the least squares problem is $\left(A^{T} A\right)^{-1} A^{T} b$.
(e) Describe how to solve the least squares problem using the QR decomposition of A.
4. (a) Prove that P is an orthogonal projector if and only if it is Hermitian.
(b) Let $\left\{q_{1}, q_{2}, \ldots, q_{n}\right\}$ be an orthonormal subset of \mathbb{C}^{m}. Show that

$$
P=\sum_{i=1}^{n} q_{i} q_{i}^{*}
$$

is an orthogonal projector with range equal to the span of $\left\{q_{1}, q_{2}, \ldots, q_{n}\right\}$
5. Assume $A \in \mathbb{R}^{m, m}$
(a) Prove that $\langle x, y\rangle_{A}=x^{T} A y$ is an inner product on \mathbb{R}^{m} if and only if A is symmetric and positive definite
(b) Assume now that A is symmetric and positive definite. If x_{*} is the solution to $A x=b$ and $\left\{p_{1}, \ldots, p_{m}\right\}$ is an orthonormal basis for \mathbb{R}^{m} with respect to \langle,\rangle_{A} and $x_{*}=\sum c_{i} p_{i}$, give a formula for the c_{i}.

