First-Year Analysis Examination August 2016 Part Two

Answer exactly FOUR questions. Write solutions in a neat and logical fashion, giving complete reasons for all steps.

1. Let the function $f: \mathbb{R} \rightarrow \mathbb{R}$ be uniformly continuous. For each positive integer n let $f_{n}(t)=f\left(t+\frac{1}{n}\right)$ whenever t is a real number. Prove that the sequence $\left(f_{n}\right)_{n=1}^{\infty}$ is uniformly convergent. Give an example (with justification) to show that the conclusion can fail if the hypothesis uniformly is dropped.
2. Let $A=\left\{a_{n}: n \geqslant 1\right\}$ be a countably infinite subset of $[0,1]$ and let $1_{A}:[0,1] \rightarrow \mathbb{R}$ be its indicator (or characteristic) function. Exhibit such a set A for which 1_{A} is not Riemann integrable and exhibit such a set A for which 1_{A} is Riemann integrable, providing justification in each case.
3. Let $\left(f_{n}\right)_{n=1}^{\infty}$ be a sequence of continuous functions from $[0,1]$ to $[0,1]$. Prove that if $f_{n}(t)$ decreases to 0 whenever $0 \leqslant t \leqslant 1$ then $\int_{0}^{1} f_{n}(t) \mathrm{d} t \rightarrow 0$. Does the same conclusion follow when decreases is replaced by converges? Justify.
4. Prove that if the function $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable then its derivative is measurable.
5. Let f be a Lebesgue integrable function on \mathbb{R} and let g be defined on \mathbb{R} by $g(y)=\int_{-\infty}^{\infty} \cos (x y) f(x) d x$. Prove that $\lim _{k \rightarrow \infty} g(k)=0$.
