Answer 4 questions. You should indicate which 4 problems you wish to be graded. Write your solutions clearly in complete English sentences. You may quote results (within reason) as long as you state them clearly.

- 1. Prove that the following polynomials are irreducible in $\mathbb{Q}[x]$, stating clearly any theorems you wish to apply.
 - (a) (3 points) $x^4 75$.
 - (b) (3 points) $x^3 5x^2 + x + 5$.
 - (c) (4 points) $x^4 14x^3 + 2x^2 + 21x 7$.
- 2. (10 points) Let R be the quotient of the ring $\mathbb{Z}[i]$ of Gaussian integers by the principal ideal (3+3i). Show that R is finite and determine the number of its elements.
- 3. Let R be a commutative ring with 1 and let I, J and P be ideals in R such that $I \cap J \subseteq P$.
 - (a) (5 points) Prove that if P is a prime ideal then either $I \subseteq P$ or $J \subseteq P$.
 - (b) (5 points) Give an example which shows that if P is not prime then the conclusion above may not hold.
- 4. Let R be a ring with 1 and M a (unital) left R-module.
 - (a) (2 points) State what it means for M to satisfy the Ascending Chain Condition (i.e. for M to be Noetherian).
 - (b) (4 points) Prove that if M satisfies the ACC then every submodule of M is finitely generated.
 - (c) (4 points) Give an example of a finitely generated module that does not satisfy the ACC.
- 5. (10 points) Determine the conjugacy classes of elements of order 8 in $GL(4, \mathbb{Q}(\sqrt{2}))$. (Hint: Factorize $x^4 + 1$ in $\mathbb{Q}(\sqrt{2})[x]$.)
- 6. Let E be an extension field of the field F.
 - (a) (2 points) What does it mean for E to be an algebraic extension of F?
 - (b) (4 points) Show that if α and β are elements of E that are both roots of the same irreducible polynomial in F[x], then the subfields $F(\alpha)$ and $F(\beta)$ of E are isomorphic.
 - (c) (4 points) Give an example where the subfields in (b) are not equal.