First-Year Second-Semester Exam January 2025

For the first five problems, show all your work and support all statements. Use a separate sheet of paper for each problem. (Each problem 10 points.)

- 1. Suppose that the continuous maps $f, g: X \to Y$ are homotopic and that the continuous maps $h, k: Y \to Z$ are homotopic. Show that $h \circ f$ is homotopic to $k \circ g$.
- 2. Prove that $\pi_1(S^1, 1) \cong \mathbb{Z}$.
- 3. State and prove the Brouwer fixed point theorem for the unit disk, D^2 .
- 4. Prove that for $n \ge 2$, the fundamental group of the *n*-sphere, S^n , is 0.
- 5. Show that the torus $T = S^1 \times S^1$ is not homeomorphic to the surface of genus two, $M_2 = T \# T$.

Answer the following with complete definitions or statements or short proofs. Each is worth 5 points.

- 6. Suppose that $f, g: X \to \mathbb{R}^n$ are continuous. Show that f and g are homotopic.
- 7. State the Borsuk-Ulam Theorem for S^2 .
- 8. State the Seifert-van Kampen Theorem.
- 9. State the Tietze Extension Theorem.
- 10. Show that \mathbb{R}^2 is not homeomorphic to \mathbb{R}^3 .
- 11. State the Tychonoff theorem.
- 12. Describe a space X with $\pi(X) \cong \mathbb{Z}/3\mathbb{Z}$.
- 13. If $j : A \hookrightarrow X$ is the inclusion of a retract, then show that the induced map on fundamental groups $j_{\#}$ is injective.
- 14. Give the definition of a deformation retraction.
- 15. Define Stone-Čech compactification.