1st Year 2nd Semester Topology Exam August, 2023

Work the following problems and show all work. Support all statements to the best of your ability. Work each problem on a separate page.

1. Show that B^2 is not homeomorphic to B^3 where B^n denotes the closed unit ball in \mathbb{R}^n .

2. Show that every continuous map $f:S^2\to S^1$ of the 2-sphere to the circle S^1 is null-homotopic.

3. Let

$$X = ([-1,1] \times \{0\} \times \{0\}) \cup (\{0\} \times [-1,1] \times \{0\}) \cup (\{0 \times \{0\} \times [-1,1]) \subset \mathbb{R}^3.$$

Show that every continuous map $f: X \to X$ has a fixed point.

4. Derive the Brouwer Fixed Point Theorem for B^2 from the Borsuk-Ulam Theorem for S^2 .

5. Let X, Y, and Z denote the following open rays in \mathbb{R}^3 :

$$X = (0, \infty) \times \{0\} \times \{0\}, \ Y = \{0\} \times (0, \infty) \times \{0\}, \ Z = \{0\} \times \{0\} \times (0, \infty)$$

Compute $\pi_1(A)$ where

(a) $A = \mathbb{R}^3 \setminus X?$

(b) $A = \mathbb{R}^3 \setminus \overline{X}$? Here \overline{X} denotes the closure of X in \mathbb{R}^3 .

(c) $A = \mathbb{R}^3 \setminus (X \cup Y)$?

(d) $A = \mathbb{R}^3 \setminus (\bar{X} \cup Y)?$

(e) $A = \mathbb{R}^3 \setminus (\overline{X} \cup Y \cup Z)?$ (f) $A = \mathbb{R}^3 \setminus (\overline{X} \cup Y \cup Z)?$

(f)
$$A = \mathbb{R}^3 \setminus (X \cup Y \cup Z)$$

Answer the following with complete definitions or proofs.

6. Describe a space X with $\pi_1(X) \cong \mathbb{Z}_3$

7. Show that the projective plane $\mathbb{R}P^2$ is not homeomorphic to the surface of genus 2, $M_2 = T \# T$.

8. Let $X = [0, 1]^{(0,1)}$ be given the product topology. Is the space X (a) compact?

(b) metrizable?

(c) separable?

9. State the Seifert-van Kampen Theorem. Can it be used to compute $\pi_1(S^n)$?

10. State the Tychonoff Theorem. Prove that every compact Hausdorff space X can be embedded into a Tychonoff cube $[0, 1]^A$.