1st Year 2nd Semester Topology Exam
 January, 2023

Work the following problems and show all work. Support all statements to the best of your ability. Work each problem on a separate sheet of paper.

1. Show that every map $f: S^{2} \rightarrow T$ of the 2 -sphere to the torus T is null-homotopic.
2. Show that the torus T is not homeomorphic to the surface of genus $2, M_{2}=T \# T$.
3. Show that for every continuous map $f: S^{1} \rightarrow S^{1}$ there is $n \in \mathbb{Z}$ such that f is homotopic to $z^{n}: S^{1} \rightarrow S^{1}$.
4. Let $X=[-1,1] \times\{0\} \cup\{0\} \times[-1,1] \subset \mathbb{R} \times \mathbb{R}$. Show that every continuous map $f: X \rightarrow X$ has a fixed point.
5. Let X, Y, and Z denote the x-axis, the y-axis, and the z-axis in \mathbb{R}^{3}. Is $\pi_{1}(A)$ abelian where
(a) $A=\mathbb{R}^{3} \backslash X$?
(b) $A=\mathbb{R}^{3} \backslash(X \cup Y)$?
(c) $A=\mathbb{R}^{3} \backslash(X \cup Y \cup Z)$?

Answer the following with complete definitions or statements or proofs.
6. Show that S^{2} is not homeomorphic to S^{3}.
7. State the Borsuk-Ulam Theorem for S^{2}.
8. Let $I=[0,1]$ and let $X=I^{I}$ be given the product topology. Is the space X
(a) compact?
(b) metrizable?
(c) separable?
9. State the Seifert-van Kampen Theorem. Can it be used to compute $\pi_{1}\left(S^{1}\right)$?
10. (a) What are completely regular spaces?
(b) Define the Stone-Cech compactification βX of X.

