First-Year Second-Semester Exam May 2021

Answer the following problems and show all your work. Support all statements to the best of your ability. Use a separate sheet of paper for each problem. Each is worth 15 points.

- 1. (a) State the Urysohn Lemma.
 - (b) Let X be a connected normal space having two distinct points x and y. Show that X has uncountably many points.
- 2. (a) State the Brouwer fixed-point theorem for the disc B^2 .
 - (b) Let A be a 3 by 3 matrix of positive real numbers. Show that A has a positive real eigenvalue. Hint: Let B be the intersection of the unit sphere S^2 and the positive octant, $\{(x, y, z \in \mathbb{R}^3 \mid x, y, z \ge 0\}$.
- 3. Prove that $\pi_1(S^1, 1) \cong \mathbb{Z}$.
- 4. (a) Define the Hawaiian earring space, H.
 - (b) Show the images of the generators of the fundamental groups of the circles do not generate the fundamental group of H.
- 5. (a) Define surface.
 - (b) Compute the fundamental group of the connected sum of a torus and second torus $T^2 \# T^2$.

Answer the following with complete definitions or statements or short proofs. Each is worth 5 points.

- 6. Show that \mathbb{R}^2 is not homeomorphic to \mathbb{R}^3 .
- 7. If $j : A \hookrightarrow X$ is the inclusion of a retract, then show that the induced map on fundamental groups $j_{\#}$ is injective.
- 8. State the Seifert-van Kampen Theorem.
- 9. What is the fundamental group of the torus $T^2 = S^1 \times S^1$?
- 10. Given continuous maps of topological spaces $f : A \to X$ and $g : A \to Y$ state the universal property satisfied by the pushout.