First-Year First-Semester Exam January 2025

Answer the following problems and show all your work. Support all statements to the best of your ability. Use a separate sheet of paper for each problem. Each is worth 10 points.

- 1. Show that for every set X, there is no function $f: X \to 2^X$ such that f is onto. Note that 2^X is the power set on X and is also denoted by $\mathcal{P}(X)$.
- 2. (a) Define what it means for τ to be a topology on a set X.
 - (b) If $\{\tau_{\alpha}\}_{\alpha \in J}$ is a family of topologies on X, show that $\bigcap_{j \in J} \tau_{\alpha}$ is a topology on X. (*Remark:* $\bigcap_{j \in J} \tau_{\alpha} = \{U \mid U \in \tau_{\alpha} \ \forall \alpha \in J\}.$)
- 3. Let $p: X \to Y$.
 - (a) Define what it means for p to be a quotient map.
 - (b) Assume that p is continuous. Show that if there is a continuous map $f: Y \to X$ such that $p \circ f$ equals the identity map of Y, then p is a quotient map.
- 4. Let $f, g : X \to Y$ be continuous maps to a Hausdorff space. Prove that the set $\{x \mid f(x) = g(x)\}$ is a closed subset of X.
- 5. Prove that if X is a compact Hausdorff space, then X is a regular space.

Answer the following with complete definitions or statements or short proofs. Each is worth 5 points.

- 6. Prove that $\{(a, b) \mid a < b\}$ is a basis for a topology on \mathbb{R} .
- 7. Let (X, τ) be a topological space. Let $A \subset X$. Give the definition of the subspace topology on A.
- 8. Suppose that $f : X \to Y$ is continuous and that $A \subset X$ is connected. Show that $f(A) \subset Y$ is connected.
- 9. Does a connected space need to be path connected?
- 10. State the Intermediate Value Theorem.
- 11. Describe the one-point compactification of $(0,1) \cup (2,3)$.
- 12. State the Urysohn Lemma.
- 13. Show that a connected normal space X having more than one point is uncountable.
- 14. What does it mean for a topological space X to be a Baire space?
- 15. Show that if $A \subset \mathbb{R}$ is connected then A is an interval.