First Year Topology Exam, First Semester August 2024

For the first five problems, show all your work and support all statements. Use a separate sheet of paper for each problem. (Each problem 10 points.)

- 1. Let X be a set. Show there is no bijection between X and $\mathcal{P}(X)$, the power set of X.
- 2. Show that \mathbb{R}^{ω} with the box topology is not connected.
- 3. Show that if X is a compact Hausdorff space, then X is a regular space.
- 4. Let A be a partially ordered set. The maximum principle states that there is a maximal totally ordered subset B of A. Zorn's lemma states that if every totally ordered subset of A has an upper bound in A, then A has a maximal element. Prove that the maximum principle implies Zorn's lemma.
- 5. Let (X, d) be a metric space. Suppose there exists some $\varepsilon > 0$ such that for all $x \in X$, the closure $\overline{B_{\varepsilon}(x)}$ of the ε -ball about x is compact. Prove that X is complete.

Answer the following problems with complete definitions, complete statements, an example, or a short proof. (Each problem 5 points.)

- 6. Define what it means for a topological space X to be *normal*.
- 7. Let X be compact, and let C_1, C_2, C_3, \ldots be a sequence of closed sets in X. If $\bigcap_{i=1}^k C_i$ is nonempty for all $k \ge 1$, then prove that $\bigcap_{i=1}^{\infty} C_i$ is nonempty.
- 8. Let $\{A_n\}_{n \in \mathbb{Z}_+}$ be a countable collection of countable sets. Prove that the union $\bigcup_{n \in \mathbb{Z}_+} A_n$ is countable.
- 9. Show that [0,1] and [0,1) are not homeomorphic.
- 10. Show that $f \colon \mathbb{R} \to \mathbb{R}^{\omega}$ defined by f(x) = (x, x, x, ...) is not continuous if \mathbb{R}^{ω} has the box topology.
- 11. Give an example of a topological space that is connected but not locally connected.
- 12. State the Baire Category Theorem.
- 13. Let (x_n) be a Cauchy sequence in the metric space X. Show that if (x_n) has a subsequence (x_{n_k}) that converges, then (x_n) also converges.
- 14. Give an example of a metric space (X, d) and a continuous function $f: X \to X$ satisfying (i) d(f(x), f(y)) < d(x, y) for all $x, y \in X$ and (ii) $f(x) \neq x$ for all $x \in X$.
- 15. Let X be a topological space. Suppose there is a space Y such that (i) X is a subspace of Y, (ii) $Y \setminus X$ is a single point, and (iii) Y is compact Hausdorff. Prove that X is locally compact.