First Year Topology Exam, First Semester January 2024

For the first five problems, show all your work and support all statements. Use a separate sheet of paper for each problem. (Each problem 10 points.)

- 1. Show there is no surjective function $f: X \to \mathcal{P}(X)$, where $\mathcal{P}(X)$ is the power set of X.
- 2. Show that if X is a compact Hausdorff space, then X is a normal space.
- 3. Let (X, d) be a complete metric space. Let $f: X \to X$ and suppose there is some c < 1 with $d(f(x), f(y)) \le c \cdot d(x, y)$ for all $x, y \in X$. Prove there exists a unique $x \in X$ with f(x) = x.
- 4. Let A be a proper subset of X, and let B be a proper subset of Y. If X and Y are connected, show that $(X \times Y) (A \times B)$ is connected.
- 5. Let (X, d) be a metric space. Suppose there exists some $\varepsilon > 0$ such that for all $x \in X$, the closure $\overline{B_{\varepsilon}(x)}$ of the ε -ball about x is compact. Prove that X is complete.

Answer the following problems with complete definitions, complete statements, an example, or a short proof. (Each problem 5 points.)

- 6. Let $\{A_n\}_{n \in \mathbb{Z}_+}$ be a countable collection of countable sets. Prove that the union $\bigcup_{n \in \mathbb{Z}_+} A_n$ is countable.
- 7. Give an example of a topological space that is path-connected but not locally path-connected.
- 8. Let $\{X_{\alpha}\}_{\alpha \in A}$ be a collection of topological spaces. What is the product topology on $\prod_{\alpha \in A} X_{\alpha}$?
- 9. Show that $f: \mathbb{R} \to \mathbb{R}^{\omega}$ defined by f(x) = (x, x, x, ...) is not continuous if \mathbb{R}^{ω} has the box topology.
- 10. If $f: X \to Y$ is a continuous bijection with X compact and Y Hausdorff, then show that f^{-1} is continuous.
- 11. Give the definition of a quotient map.
- 12. Show that [0,1] and (0,1) are not homeomorphic.
- 13. Using the fact that there exists a continuous surjective function $[0,1] \rightarrow [0,1]^2$, show there is a continuous surjective function $[0,1] \rightarrow [0,1]^3$.
- 14. State the Baire Category Theorem.
- 15. Let X be a locally compact Hausdorff space. Define the topology on $Y = X \cup \{\infty\}$ that makes Y the one-point compactification of X.