Instructions: Do 7 and only seven of the following.

1. Let $X \subset \mathbb{R}$ consist of all numbers of the form

$$1 + \frac{1}{\sqrt{p}} + \dots + \frac{1}{\sqrt{p^n}}$$

with p prime and $n \in \mathbb{Z}_+$. Show that X is countable.

- 2. Assume $f: X \to Y$ is a continuous bijection with X compact and Y Hausdorff. Show that f is a homeomorphism.
- 3. Prove that a compact Hausdorff space is normal.
- 4. Assume that $f: X \to Y$ is continuous and surjective.
 - (a) If X is Lindelöf, show that Y is also.
 - (b) If X is separable, show that Y is also.
- 5. Each $A_{\lambda} \subset X$ is connected for $\lambda \in \Lambda$ and $\bigcap_{\lambda \in \Lambda} A_{\lambda} \neq \emptyset$ then prove that $\bigcup_{\lambda \in \Lambda} A_{\lambda}$ is connected.
- 6. Show that a subspace of a complete metric space is itself complete if and only if it is a closed subspace.
- 7. (a) Define the metric ρ on $[-1,1]^{\mathbb{Z}_+}$ that gives it the uniform topology
 - (b) Show that in this metric the unit ball, $B_1(\underline{0})$, is not limit point compact where $\underline{0}$ is the sequence $0, 0, 0, \ldots$.
- 8. Prove or disprove: The real line \mathbb{R}_{ℓ} with the lower limit topology is connected.