Numerical Linear Algebra Exam-May 2025 Do **4** (four) problems

1. Assume $A \in C^{m \times m}$.

(a) Show that A has a Schur decomposition.

(b) If A is normal, show that A is diagonalizable.

2. Suppose A is Hermitian positive definite.

(a) Prove that each principal submatrix of A is Hermitian positive definite.

(b) Prove that an element of A with largest magnitude lies on the diagonal.

(c) Prove that A has a Cholesky decomposition.

3. (a) Show that $||x||_{\infty}$ is equivalent to $||x||_2$ for all $x \in \mathbb{R}^n$. That is to find C and c such that $c||x||_{\infty} \leq ||x||_2 \leq C||x||_{\infty}$, for all $x \in \mathbb{R}^n$. Note that the constants should be determined so that the equalities hold for some nonzero $x \in \mathbb{R}^n$.

(b) Show that $||QA||_2 = ||A||_2$ if Q is a unitary matrix.

4. Assume that $A \in C^{n \times n}$ and there exists $p \ge 1$ such that $||A||_p < 1$, where $|| \cdot ||_p$ is a vector-induced matrix norm.

(a) Prove that I - A is invertible.

(b) Prove that

$$(I - A)^{-1} = \sum_{k=0}^{\infty} A^k.$$

(c) Prove that $||A||_q ||A^{-1}||_q \ge 1, \forall 1 \le q \le \infty$.

(d) Prove that

$$\frac{1}{1+\|A\|_p} \le \|(I-A)^{-1}\|_p \le \frac{1}{1-\|A\|_p}.$$

5. Let $A = U\Sigma V^*$ be the singular value decomposition of $A \in C^{m \times n}$. Let u_j denote column j of U.

(a) Suppose rank(A)=p < n < m. Show $\{u_1, u_2, \dots, u_p\}$ is a basis for Col(A) and $\{u_{p+1}, u_{p+2}, \dots, u_m\}$ is a basis for $Null(A^*)$.

(b) Suppose A is full rank and $x \neq 0$. Let σ_i , $i = 1, \dots, n$ be the singular values of A. Show

$$\sigma_1 \ge \frac{\|Ax\|_2}{\|x\|_2} \ge \sigma_n > 0.$$

If you want to use the property that $||A||_2 = \sigma_1$, then you must prove that it holds.