Numerical Linear Algebra Exam-Jan 2025 Do **4** (four) problems

1. Assume $A \in C^{m \times m}$.

(a) Show that A has a Schur decomposition.

(b) If A has a collection of m linearly independent eigenvectors, show that A is diagonalizable.

2. If q_1, \dots, q_n is an orthonormal basis for the subspace $V \subset C^{m \times n}$ with m > n, prove that the orthogonal projector onto V is QQ^* , where Q is the matrix whose columns are the q_j .

3. Let $A \in C^{m \times n}$, with $m \ge n$ and $rank(A) = n \ge 3$. Let a_1, a_2, \cdots denote the columns of A.

(a) Using the modified Gramm-Schmidt process, write out expressions for q_1, q_2, q_3 , the first three columns of Q in the QR decomposition of A.

(b) Show the vector q_3 found in part (a) is orthogonal to both q_1 and q_2 .

4. Let $\|\cdot\|$ be a subordinate (induced) matrix norm.

(a) If E is a $n \times n$ with ||E|| < 1, then show I + E is nonsingular and

$$\|(I+E)^{-1}\| \le \frac{1}{1-\|E\|}$$

(b) If A is a $n \times n$ invertible and E is $n \times n$ with $||A^{-1}|| ||E|| < 1$, then show A + E is nonsingular and

$$||(A+E)^{-1}|| \le \frac{||A^{-1}||}{1-||A^{-1}||||E||}$$

5. Let $A = U\Sigma V^*$ be the singular value decomposition of $A \in C^{m \times n}$. Let u_j denote column j of U.

(a) Suppose rank(A)=p < n < m. Show $\{u_1, u_2, \dots, u_p\}$ is a basis for Col(A) and $\{u_{p+1}, u_{p+2}, \dots, u_m\}$ is a basis for $Null(A^*)$.

(b) Suppose A is full rank and $x \neq 0$. Let σ_i , $i = 1, \dots, n$ be the sigular values of A. Show

$$\sigma_1 \ge \frac{\|Ax\|_2}{\|x\|_2} \ge \sigma_n > 0.$$

If you want to use the property that $||A||_2 = \sigma_1$, then you must prove that it holds.