Numerical Linear Algebra Exam-May 2024 Do **4** (four) problems

1. Let A be an $m \times n$ matrix $(m \ge n)$ and let $A = \hat{Q}\hat{R}$ be a reduced QR factorization of A. Prove that A has full rank if and only if the diagonal entries of R are nonzero.

2. Assume that $A \in C^{n \times n}$ and there exists $p \ge 1$ such that $||A||_p < 1$, where $|| \cdot ||_p$ is a vector-induced matrix norm.

- (a) Prove that I A is invertible.
- (b) Prove that

$$(I - A)^{-1} = \sum_{k=0}^{\infty} A^k.$$

- (c) Prove that $||A||_q ||A^{-1}||_q \ge 1, \forall 1 \le q \le \infty$.
- (d) Prove that

$$\frac{1}{1+\|A\|_p} \le \|(I-A)^{-1}\|_p \le \frac{1}{1-\|A\|_p}.$$

3. Suppose A is Hermitian positive definite.

- (a) Prove that each principal submatrix of A is Hermitian positive definite.
- (b) Prove that an element of A with largest magnitude lies on the diagonal.
- (c) Prove that A has a Cholesky decomposition.

4. Let $\mathbf{v} = [2, -1, 1]^T$ and $H = (span{\mathbf{v}})^{\perp}$.

- (a) Find the matrix $P_{\mathbf{v}}$, the orthogonal projection onto $span\{\mathbf{v}\}$.
- (b) Find the matrix P_H , the orthogonal projection onto H.
- (c) Find Q_H , the unitary matrix that reflects across H.

5. Let
$$A, \, \delta A \in \mathbb{R}^{n \times n}$$
 be full rank and b, x and $\delta x \in \mathbb{R}^n$. Prove that if

$$Ax = b$$
, and $(A + \delta A)(x + \delta x) = b$,

then

$$\frac{\|\delta A\|}{\|x+\delta x\|} \le \kappa(A) \frac{\|\delta A\|}{\|A\|},$$

where $\kappa(A)$ is the condition number of A.