Numerical Linear Algebra Exam: August, 2019 Do 4 (four) problems.

1. Let $A \in \mathbb{C}^{m \times n}$.
(a) Prove or give a counterexample: $\|A\|_{2} \leq \sqrt{\|A\|_{\infty}\|A\|_{1}}$. If you prove this, make sure to justify each nontrivial step.
(b) Prove or give a counterexample: $\|A\|_{2} \leq\|A\|_{F}$, where $\|A\|_{F}$ is the Frobenius norm of A. If you prove this, make sure to justify each nontrivial step.
2. (a) Prove that the inverse of an upper-triangular matrix is upper-triangular.
(b) Let $A \in \mathbb{C}^{m \times n}$ with $m>n$. Consider the least-squares problem of finding $x \in \mathbb{C}^{n}$ that minimizes $\|A x-b\|$ in the 2-norm. Describe a method for solving the problem efficiently, and explain (and justify) why the normal equations should not solved.
3. Let $A \in \mathbb{C}^{m \times n}$, with $m \geq n$ and $\operatorname{rank}(A)=p=n \geq 3$. Let a_{1}, a_{2}, \ldots denote the columns of A.
(a) Using the classical Gramm-Schmidt process, write out expressions for q_{1}, q_{2}, q_{3}, the first three columns of Q in the $Q R$ decomposition of A.
(b) Show the vector q_{3} found in part (a) is orthogonal to both q_{1} and q_{2}.
(c) Write an expression for the first Householder reflector H_{1}, used to find the QR decomposition of A. Show H_{1} is both unitary and Hermetian.
4. Let $A \in \mathbb{C}^{m \times m}$ be Hermetian.
(a) Show that all eigenvalues of A are real.
(b) Define the stationary iterative method (a.k.a. fixed point method)

$$
\begin{equation*}
x^{(k+1)}=A x^{(k)}+b . \tag{1}
\end{equation*}
$$

Suppose (1) has fixed-point x, namely x satisfies $x=A x+b$. Show the iteration (1) converges to x from any starting guess $x^{(0)}$, that is $x^{(k)} \rightarrow x$ as $k \rightarrow \infty$, if and only if the eigenvalues λ_{i} of A satisfy $\left|\lambda_{i}\right|<1, i=1, \ldots, m$. You may use the fact that Hermetian matrix A is unitarily diagonalizable.
5. Consider the matrix A given by

$$
\left(\begin{array}{rrrr}
1 & -1 & 2 & 0 \\
-1 & 4 & -1 & 1 \\
2 & -1 & 6 & -2 \\
0 & 1 & -2 & 4
\end{array}\right)
$$

Suppose the eigenvalues of A are all distinct (they are) and satisfy $\lambda_{1}>\lambda_{2}>\lambda_{3}>\lambda_{4}$.
(a) Show that A is positive definite.
(b) Describe an algorithm that could be used to approximate λ_{4}.
(c) Describe algorithms that could be used to approximate λ_{2}, λ_{3}, and their eigenvectors.

