Numerical Analysis Exam-January 2024 Do 4 (four) problems

1. Derive the three-point formula for the second derivative

$$
f^{\prime \prime}(x)=\frac{1}{h^{2}}\left(f\left(x_{0}-h\right)-2 f\left(x_{0}\right)+f\left(x_{0}+h\right)\right)-\frac{h^{2}}{12} f^{(4)}(\eta)
$$

for some $\eta \in\left[x_{0}-h, x_{0}+h\right]$.
2. Consider

$$
\begin{equation*}
y^{\prime}=4 t y ; \quad t \in[0,1] ; \quad y(0)=2 \tag{1}
\end{equation*}
$$

which has solution $Y(t)=2 e^{2 t^{2}}$.
(a) Derive an error bound for the forward Euler scheme.
(b) Derive the Taylor method of order 2 for (1).
3. Let \mathcal{P}_{1} be the space of polynomials of degree at most one. Using the norm $\|u\|_{2}=\left(\int_{a}^{b} u^{2} d x\right)^{\frac{1}{2}}$.
(a) Find the least-squares approximation to $f(x)=x^{3}$ in \mathcal{P}_{1} over $[a, b]=$ $[-1,1]$.
(b) Find the least-squares approximation to $f(x)=x^{4}$ in \mathcal{P}_{1} over $[a, b]=$ $[0,1]$.
4. Consider the fixed point problem $x=f(x)$ where $f(x)=e^{-(3+x)}$.
(a) Assuming all computations are done in exact arithmetic, find the largest open interval in R where the fixed point iteration $x_{k+1}=f\left(x_{k}\right)$ is ensured to converge.
(b) Write a Newton iteration for finding the fixed point.
5. Suppose $f \in C^{n+1}[a, b]$, and let $p \in \mathcal{P}_{n}$ be a polynomial that interpolates the data $\left\{\left(x_{i}, f\left(x_{i}\right)\right)\right\}_{i=0}^{n}$, where x_{0}, \cdots, x_{n}, are distinct points in $[a, b]$. Consider an arbitrary fixed $x \in[a, b]$, and derive an exact expression for the error $f(x)-$ $p(x)$.

