Numerical Analysis Exam-January 2024 Do **4** (four) problems

1. Derive the three-point formula for the second derivative

$$f''(x) = \frac{1}{h^2}(f(x_0 - h) - 2f(x_0) + f(x_0 + h)) - \frac{h^2}{12}f^{(4)}(\eta),$$

for some $\eta \in [x_0 - h, x_0 + h]$.

2. Consider

$$y' = 4ty;$$
 $t \in [0, 1];$ $y(0) = 2,$ (1)

which has solution $Y(t) = 2e^{2t^2}$.

(a) Derive an error bound for the forward Euler scheme.

(b) Derive the Taylor method of order 2 for (1).

3. Let \mathcal{P}_1 be the space of polynomials of degree at most one. Using the norm $||u||_2 = \left(\int_a^b u^2 dx\right)^{\frac{1}{2}}$.

(a) Find the least-squares approximation to $f(x) = x^3$ in \mathcal{P}_1 over [a, b] = [-1, 1].

(b) Find the least-squares approximation to $f(x) = x^4$ in \mathcal{P}_1 over [a, b] = [0, 1].

4. Consider the fixed point problem x = f(x) where $f(x) = e^{-(3+x)}$.

(a) Assuming all computations are done in exact arithmetic, find the largest open interval in R where the fixed point iteration $x_{k+1} = f(x_k)$ is ensured to converge.

(b) Write a Newton iteration for finding the fixed point.

5. Suppose $f \in C^{n+1}[a, b]$, and let $p \in \mathcal{P}_n$ be a polynomial that interpolates the data $\{(x_i, f(x_i))\}_{i=0}^n$, where x_0, \dots, x_n , are distinct points in [a, b]. Consider an arbitrary fixed $x \in [a, b]$, and derive an exact expression for the error f(x) - p(x).