Numerical Analysis Exam-May 2023 Do 4 (four) problems

1. Consider

$$
\begin{equation*}
y^{\prime}=4 t y ; \quad t \in[0,1] ; \quad y(0)=2 \tag{1}
\end{equation*}
$$

which has solution $Y(t)=2 e^{2 t^{2}}$.
(a) Derive an error bound for the Euler scheme.
(b) Derive the Taylor method of order 2 for (1).
2. Find a, b, c so that the quadrature formula

$$
\int_{0}^{2} f(x) d x=a f(0)+b f(1)+c f(2)
$$

has the largest degree of precision.
3. Suppose $f \in C^{n+1}[a, b]$, and let $p \in \mathcal{P}_{n}$ be a polynomial that interpolates the data $\left\{\left(x_{i}, f\left(x_{i}\right)\right)\right\}_{i=0}^{n}$, where x_{0}, \cdots, x_{n}, are distinct points in $[a, b]$. Consider an arbitrary fixed $x \in[a, b]$, and derive an exact expression for the error $f(x)-$ $p(x)$.
4. Let \mathcal{P}_{1} be the space of polynomials of degree at most one. Using the norm $\|u\|_{2}=\left(\int_{a}^{b} u^{2} d x\right)^{\frac{1}{2}}$.
(a) Find the least-squares approximation to $f(x)=x^{3}$ in \mathcal{P}_{1} over $[a, b]=$ $[-1,1]$.
(b) Find the least-squares approximation to $f(x)=x^{3}$ in \mathcal{P}_{1} over $[a, b]=$ $[0,1]$.
5. Let $G=[0,2]$ and

$$
g(x)=\frac{1}{3}\left(\frac{x^{3}}{3}-x^{2}-\frac{5 x}{4}+4\right)
$$

Use the contraction mapping theorem to prove that if $x_{0} \in G$, then the sequence defined by $x_{k+1}=g\left(x_{k}\right)(k=0,1, \cdots)$ converges to a unique fixed point $z \in G$.
(b) Consider the fixed point iteration method $x_{k+1}=g\left(x_{k}\right)(k=0,1, \cdots)$ for solving the nonlinear equation $f(x)=0$. Consider choosing an iteration function of the form

$$
g(x)=x-a f(x)-b(f(x))^{2}-c(f(x))^{3},
$$

where a, b, c are parameters to be determined. Assume f is sufficiently differentiable and the corresponding iterations $x_{k+1}=g\left(x_{k}\right)$ converge to a unique fixed point z. Find expressions for the parameters a, b, c in terms of functions of z such that the iteration method is of fourth order.

