First-year Analysis Examination Part Two January 2023

Answer FOUR questions in detail.
State carefully any results used without proof.

1. Let f be a real-valued function on $[0,1]$ and consider the statements:
(i) for each positive integer n the function f is Riemann-integrable on $[1 / n, 1]$ and the sequence of integrals $\int_{1 / n}^{1} f$ converges to a real number as $n \rightarrow \infty$;
(ii) the function f is Riemann-integrable on $[0,1]$.

Prove that (ii) implies (i); and show by example that (i) \Rightarrow (ii) can fail.
2. Let X be a metric space on which $\left(f_{n}\right)$ and $\left(g_{n}\right)$ are uniformly convergent sequences of continuous real-valued functions.
(i) Prove that if X is compact then $\left(f_{n} g_{n}\right)$ is uniformly convergent.
(ii) Show that the conclusion in (i) can fail when X is not compact.
3. Let $f:[0,1] \times[0,1] \rightarrow \mathbb{R}$ be continuous. By first considering polynomials in two variables, prove that

$$
\int_{0}^{1}\left(\int_{0}^{1} f(x, y) \mathrm{d} x\right) \mathrm{d} y=\int_{0}^{1}\left(\int_{0}^{1} f(x, y) \mathrm{d} y\right) \mathrm{d} x .
$$

4. Prove that if $\left(f_{n}\right)$ is a sequence of measurable functions such that $f_{n} \rightarrow f$ on some measure space, then f is measurable. Hence, or otherwise, show that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable then its derivative f^{\prime} is Borel measurable.
5. In each of the following cases, give (if possible and with justification) a sequence $\left(f_{n}\right)$ of Lebesgue integrable functions from \mathbb{R} to \mathbb{R} such that:
(i) $f_{n} \rightarrow 0$ pointwise but $\int f_{n} \mathrm{~d} \lambda \rightarrow 1$ as $n \rightarrow \infty$;
(ii) $f_{n} \rightarrow 0$ pointwise but $\int f_{n} \mathrm{~d} \lambda \rightarrow \infty$ as $n \rightarrow \infty$
where λ denotes Lebesgue measure.
