First-year Analysis Examination Part Two January 2023

Answer FOUR questions in detail. State carefully any results used without proof.

1. Let f be a real-valued function on [0, 1] and consider the statements: (i) for each positive integer n the function f is Riemann-integrable on [1/n, 1] and the sequence of integrals $\int_{1/n}^{1} f$ converges to a real number as $n \to \infty$; (ii) the function f is Riemann-integrable on [0, 1].

Prove that (ii) implies (i); and show by example that (i) \Rightarrow (ii) can fail.

2. Let X be a metric space on which (f_n) and (g_n) are uniformly convergent sequences of continuous real-valued functions.

(i) Prove that if X is compact then $(f_n g_n)$ is uniformly convergent.

(ii) Show that the conclusion in (i) can fail when X is not compact.

3. Let $f: [0,1] \times [0,1] \to \mathbb{R}$ be continuous. By first considering polynomials in two variables, prove that

$$\int_0^1 \left(\int_0^1 f(x,y) \, \mathrm{d}x \right) \mathrm{d}y = \int_0^1 \left(\int_0^1 f(x,y) \, \mathrm{d}y \right) \mathrm{d}x.$$

4. Prove that if (f_n) is a sequence of measurable functions such that $f_n \to f$ on some measure space, then f is measurable. Hence, or otherwise, show that if $f : \mathbb{R} \to \mathbb{R}$ is differentiable then its derivative f' is Borel measurable.

5. In each of the following cases, give (if possible and with justification) a sequence (f_n) of Lebesgue integrable functions from \mathbb{R} to \mathbb{R} such that:

(i) $f_n \to 0$ pointwise but $\int f_n d\lambda \to 1$ as $n \to \infty$;

(ii) $f_n \to 0$ pointwise but $\int f_n d\lambda \to \infty$ as $n \to \infty$

where λ denotes Lebesgue measure.