First-year Analysis Examination
 Part Two
 August 2022

Answer FOUR questions in detail.
State carefully any results used without proof.

1. Let $f ;[0,1] \rightarrow \mathbb{R}$ satisfy the following rules: if t is irrational then $f(t)=0$; if $t=m / n$ is a rational in lowest terms then $f(t)=1 / n$. Prove that f is Riemann integrable and calculate its integral.
2. Let $\mathcal{F} \subseteq C(X)$ be equicontinuous and let A be the set comprising all points of X at which \mathcal{F} is bounded; that is, $a \in A$ exactly when there exists K such that $|f(a)|<K$ whenever $f \in \mathcal{F}$. Prove that $A \subseteq X$ is both closed and open.
3. Let the function $f: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable to all orders and denote its nth derivative by f_{n}. Assume that the sequence $\left(f_{n}\right)_{n=0}^{\infty}$ converges uniformly to the function g on \mathbb{R} and deduce as much as possible about g.
4. Prove that if the real-valued functions f and g on the same space are measurable, then so are their pointwise sum $f+g$ and pointwise product $f g$.
5. For each $n \in \mathbb{N}$ let $f_{n}:[0,1] \rightarrow[0,1]$ be continuous and assume that $f_{n} \rightarrow 0$ pointwise as $n \rightarrow \infty$. Does it follow that

$$
\int_{0}^{1} f_{n}(t) \mathrm{d} t \rightarrow 0 \text { as } n \rightarrow \infty ?
$$

Does your answer change if continuous is replaced by Riemann integrable?

