First-year Analysis Examination Part Two May 2022

Answer FOUR questions in detail. State carefully any results used without proof.

1. Let $f: [a,b] \to \mathbb{R}$ have the property that for each $\varepsilon > 0$ there exist Riemann integrable functions ℓ and u on [a, b] such that $\ell \leq f \leq u$ and $\int_{a}^{b} (u-\ell) < \varepsilon$. Does it follow that f is Riemann integrable on [a,b]? Proof or counterexample.

2. Suppose $(p_n)_{n=0}^{\infty}$ is a sequence of polynomials in one variable.

(i) Assume that $p_n \to f$ uniformly on [0,1] as $n \to \infty$; deduce as much as possible about the function $f: [0,1] \to \mathbb{R}$.

(ii) Assume that $p_n \to f$ uniformly on \mathbb{R} as $n \to \infty$; deduce as much as possible about the function $f : \mathbb{R} \to \mathbb{R}$.

3. Let the continuous function $f:[0,1] \to \mathbb{R}$ satisfy

$$\int_0^1 f(t)t^n dt = 1/(n+2)$$

for all but finitely many positive integers n. Deduce as much as possible about f.

4. Let $(f_n)_{n=0}^{\infty}$ be a sequence of measurable real-valued functions on some measurable space. Prove that each of the following sets is measurable:

(i) $A = \{\omega : \sum_{n=0}^{\infty} f_n(\omega) \text{ is absolutely convergent}\};$ (ii) $C = \{\omega : \sum_{n=0}^{\infty} f_n(\omega) \text{ is conditionally convergent}\}.$

5. Let $(\Omega, \mathcal{A}, \mu)$ be a measure space; let $A_0 \subseteq A_1 \subseteq \cdots$ be an increasing sequence in \mathcal{A} such that $\bigcup_{n=0}^{\infty} A_n = \Omega$; let $f : \Omega \to \mathbb{R}$ be measurable; and let L be a real number. Consider the statements:

(i) f is integrable on Ω and $\int_{\Omega} f d\mu = L$;

(ii) f is integrable on each A_n and $\int_{A_n} f d\mu \to L$ as $n \to \infty$.

Prove that (i) implies (ii) and decide (with proof or counterexample) whether (ii) implies (i).