First-year Analysis Examination
 Part Two January 2022

Answer FOUR questions in detail.
State carefully any results used without proof.

1. For each integer $n \geqslant 1$ let $\chi_{n}=n 1_{[0,1 / n]}$ be n times the indicator function of the interval $[0,1 / n]$. Prove that if $f:[0,1] \rightarrow \mathbb{R}$ is continuous then

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} \chi_{n}(t) f(t) \mathrm{d} t=f(0)
$$

2. Let $a>0$. When n is a positive integer and $t \geqslant 0$ write

$$
f_{n}(t)=\frac{\sin n t}{1+n t} .
$$

Is the sequence $\left(f_{n}: n>0\right)$ uniformly convergent on $[a, \infty)$? On $[0, \infty)$?
3 . Let $f:[0,1] \rightarrow \mathbb{R}$ be continuous. Prove that if

$$
\int_{0}^{1} f(t) t^{n+\frac{1}{2}} \mathrm{~d} t=0
$$

for each positive integer n then f vanishes identically.
4. When $\left(f_{n}: n>0\right)$ is a sequence of measurable real-valued functions on some measurable space, show that the following sets are measurable:
(i) $\left\{\omega: f_{n}(\omega)\right.$ alternates in sign $\}$
(ii) $\left\{\omega: f_{n}(\omega)\right.$ is eventually rational $\}$
(iii) $\left\{\omega: \sum_{n>0} f_{n}(\omega)\right.$ is absolutely convergent $\}$.
5. State the Monotone Convergence Theorem and the Fatou Lemma, and deduce one of these from the other.

