First-year Analysis Examination Part Two August 2021

Answer FOUR questions in detail. State carefully any results used without proof.

1. Let f_A be the indicator function of the countably infinite set $A \subseteq [0, 1]$: that is, $f_A(t)$ is 1 when $t \in A$ and 0 when $t \in [0, 1] \setminus A$.

(i) Exhibit (with brief justification) such an A for which f_A is Riemann integrable, or prove that no such A exists.

(ii) Exhibit (with brief justification) such an A for which f_A is not Riemann integrable, or prove that no such A exists.

2. For each n > 0 let the function $f_n : X \to \mathbb{R}$ be continuous at all but finitely many points. Prove that if $f_n \to f$ uniformly on X, then f is continuous at all but countably many points.

3. $(f_n : n > 0)$ is an equicontinuous sequence of real-valued functions on a compact space. Prove that if $f_n \to f$ pointwise then $f_n \to f$ uniformly.

4. Let $(f_n : n > 0)$ be a sequence of measurable functions on Ω . Prove that each of the following sets is measurable:

(i) $\{\omega \in \Omega : \text{the sequence } f_n(\omega) \text{ is eventually constant}\};$

(ii) $\{\omega \in \Omega : \text{the values } f_n(\omega) \text{ are all different}\}.$

5. Let $(f_n : n > 0)$ be a sequence of non-negative integrable functions that converges pointwise to f. Prove that if

$$\int_{\Omega} f_n \, \mathrm{d}\mu \to \int_{\Omega} f \, \mathrm{d}\mu$$

then

$$\int_{\Omega} |f - f_n| \,\mathrm{d}\mu \to 0$$

[It might help to consider the positive part $(f - f_n)^+ = \max\{0, f - f_n\}$.]