First-year Analysis Examination Part One January 2024

Answer FOUR questions in detail. State carefully any results used without proof.

1. Let $f:(0,\infty)\to\mathbb{R}$ be continuous. Prove that if

$$\limsup_{n \to \infty} f(n) > 0 > \liminf_{n \to \infty} f(n)$$

then f has infinitely many zeros. Does the same conclusion hold if one of the strict inequalities is replaced by a weak inequality?

- 2. Let $f : \mathbb{R} \to \mathbb{R}$ be continuous and assume that $f^{-1}(y) \subseteq \mathbb{Q}$ whenever $y \in \mathbb{R} \setminus \mathbb{Q}$. What can be deduced about f?
- 3. Let the function $f:(0,1)\to\mathbb{R}$ be uniformly continuous.
- (i) Prove that f extends to a continuous function $F:[0,1]\to\mathbb{R}$.
- (ii) Does the same conclusion follow if f is merely continuous? What if f is continuous and bounded? Justify your assertions.
- 4. Let $f: X \to Y$ be a map between metric spaces and consider the following two statements:
- (i) if (x_n) is a Cauchy sequence in X, then $(f(x_n))$ is Cauchy in Y;
- (ii) f is uniformly continuous.

For each implication (i) \Rightarrow (ii) and (ii) \Rightarrow (i), give a proof (if true) or a counterexample (if false).

5. The function $f: \mathbb{R} \to \mathbb{R}$ is differentiable, except perhaps at $a \in \mathbb{R}$. Prove that if the real limit $\lim_{t\to a} f'(t)$ exists then f is in fact differentiable at a.