Answer 4 questions. You should indicate which 4 problems you wish to be graded. Write your solutions clearly in complete English sentences. You may quote results (within reason) as long as you state them clearly.

- 1. This question is about the additive group of rational numbers, denoted by \mathbb{Q} .
 - (a) (5 points) Prove that the group \mathbb{Q} has no proper subgroups of finite index.
 - (b) (5 points) Prove that \mathbb{Q} does not have a finite generating set.
- 2. (10 points) Let G be a finite group and N a normal subgroup. Show that if p is a prime and P is a Sylow p-subgroup of G, then $P \cap N$ is a Sylow p-subgroup of N.
- 3. Let G be a finite group.
 - (a) (2 points) Define what is meant by a maximal subgroup of G.
 - (b) (4 points) Let H denote the intersection of all the maximal subgroups of G. Prove that H is a characteristic subgroup of G.
 - (c) (4 points) Let H be as in (b). Prove that if X is a subset of G such that $\langle X \cup H \rangle = G$ then $\langle X \rangle = G$. (Here $\langle S \rangle$ denotes the subgroup generated by the set S.)
- 4. (10 points) Let G be a nonabelian simple group. In $G \times G$, let $G_1 = \{(g, 1) \mid g \in G\}$ $G_2 = \{(1,g) \mid g \in G\}$. Prove that G_1 and G_2 are the only proper nontrivial normal subgroups of $G \times G$.
- 5. (10 points) Let S_n and A_n , denote the symmetric group and alternating group of degreee n respectively, where $n \geq 2$. Suppose σ and σ' are elements of A_n that are in the same S_n -conjugacy class. Show that they lie in the same A_n -conjugacy class if and only if there is an odd permutation in the centralizer of σ in S_n .
- 6. (a) (3 points) Compute the order of GL(2, 17), factored into prime powers.
 - (b) (7 points) Prove that a group of order 7.17^2 must be abelian.