PhD Analysis Exam, August 2018

DO SIX OF EIGHT. ANSWER EACH PROBLEM ON A SEPARATE SHEET OF PAPER. WRITE SOLUTIONS IN A NEAT AND LOGICAL FASHION, GIVING COMPLETE REASONS FOR ALL STEPS.

- (1) Let X, Y be topological spaces. Prove, if $f : X \to Y$ is continuous, then f is Borel measurable.
- (2) Let (X, \mathcal{M}, μ) be a σ -finite measure space and let $f \in L^1(\mu)$. Prove that for every $\epsilon > 0$ there exists a $\delta > 0$ such that if $E \in \mathcal{M}$ and $\mu(E) < \delta$, then

$$\int_E |f| \, d\mu < \epsilon$$

- (3) Do two. In each case, give a brief justification for your answer.
 - (a) Give an example, if possible, of a sequence $(f_n) \subset L^1(\mathbb{R})$ and an $f \in L^1(\mathbb{R})$ such that $f_n \to f$ uniformly on \mathbb{R} but f_n does not converge to f in the L^1 norm.
 - (b) Evaluate

$$\lim_{n \to \infty} \int_1^\infty \frac{e^{inx}}{x^n} \, dx$$

- (c) Give an example to show that the σ -finiteness hypothesis is necessary in Tonelli's theorem.
- (4) Let (X, \mathcal{M}, μ) be a σ -finite measure space and $\mathcal{N} \subset \mathcal{M}$ a sub- σ -algebra. Put $\nu = \mu|_{\mathcal{N}}$. Prove, if ν is σ -finite and $f \in L^1(\mu)$, then there exists a $g \in L^1(\nu)$ such that for all $E \in \mathcal{N}$,

$$\int_E f \, d\mu = \int_E g \, d\nu.$$

- (5) Let (X, \mathcal{M}, μ) be a σ -finite measure space. Fix a measurable function $f: X \to \mathbb{C}$.
 - (a) Assuming $f \in L^{\infty}(\mu)$, show if $g \in L^{1}(\mu)$, then $fg \in L^{1}(\mu)$ and the mapping $M_{f} : L^{1}(\mu) \to L^{1}(\mu)$ defined by $M_{f}g = fg$ is a bounded linear transformation.
 - (b) Conversely, show, if $fg \in L^1(\mu)$ for each $g \in L^1(\mu)$, then $f \in L^{\infty}(\mu)$.

(6) Fix $1 and let <math>\frac{1}{p} + \frac{1}{q} = 1$. Let (f_n) be a sequence in $L^p[0, 1]$. Suppose that for every $g \in L^q[0, 1]$, the limit

$$\lim_{n \to \infty} \int_0^1 f_n g$$

exists. Prove that there exists an $f \in L^p[0,1]$ such that

$$\lim_{n \to \infty} \int_0^1 f_n g = \int_0^1 f g$$

for all $g \in L^q[0,1]$. (Hint: first show that the assignment $g \to \lim \int f_n g$ defines a linear functional on L^q .)

- (7) Let X be a Banach space. Say a sequence (x_n) from X converges weakly to $x \in X$ if $f(x_n) \to f(x)$ for every $f \in X^*$. Prove that if Y is a closed subspace of X, $(x_n) \subset Y$, and $x_n \to x$ weakly, then $x \in Y$.
- (8) Let X be a Banach space, $Y \subset X$ a closed subspace. Say Y is complemented in X if there exists a closed subspace $Z \subset X$ such that $Y \cap Z = \{0\}$ and Y + Z = X.

Prove, if Y is complemented in X, then there exists a bounded linear operator $T: X \to Y$ such that T(y) = y for all $y \in Y$.