Numerical Linear Algebra Exam-January 2024 Do **4** (four) problems

1. Assume $A \in C^{m \times m}$.

(a) Show that A has a Schur decomposition.

(b) If A has a collection of m linearly dependent eigenvectors, show that A is diagonalizable.

2. Let matrix $A \in \mathcal{C}^{m \times n}$ with n < m. Let $b \in \mathcal{C}^m$, and let r denote the residual vector r = b - Ax.

(a) Show that x solves the least squared problem $\min ||b - Ax||_2$ if and only if $r \in Null(A^*)$.

(b) Suppose A is full rank, and describe how to find the least squares solution using the QR decomposition of A.

3. Let $A \in C^{m \times n}$, with $m \ge n$ and $rank(A) = p = n \ge 3$. Let a_1, a_2, \cdots denote the columns of A.

(a) Using the modified Gramm-Schmidt process, write out expressions for q_1, q_2, q_3 , the first three columns of Q in the QR decomposition of A.

(b) Show the vector q_3 found in part (a) is orthogonal to both q_1 and q_2 .

4. Let $\|\cdot\|$ be a subordinate (induced) matrix norm.

(a) If E is a $n \times n$ with ||E|| < 1, then show I + E is nonsingular and

$$||(I+E)^{-1}|| \le \frac{1}{1-||E||}.$$

(b) If A is a $n \times n$ invertible and E is $n \times n$ with $||A^{-1}|| ||E|| < 1$, then show A + E is nonsingular and

$$||(A+E)^{-1}|| \le \frac{||A^{-1}||}{1-||A^{-1}||||E||}.$$

5. If q_1, \dots, q_n is an orthonormal basis for the subspace $V \subset C^{m \times n}$ with m > n, prove that the orthogonal projector onto V is QQ^* , where Q is the matrix whose columns are the q_j .